

Traffic Study

Evaluation of Greene Valley Forest Preserve Access on Greene Road near Kimberwick Lane

Prepared for:
Forest preserve District of DuPage County

Date:
January 6, 2026

Prepared by:
Ravi Arora, P.E., PTOE, RSP2I

Table of Contents

Executive Summary	4-5
Introduction	6-7
Existing Conditions.....	8-13
Future Conditions	14-15
Greene Road and Existing Forest Preserve Entrance Analysis	16-20
Alternative Forest Preserve Entrance Locations Analysis.....	21-29
Comparison of Existing Conditions Versus Alternatives.....	30-38
Conclusion and Recommendations.....	39-40
Appendix A Base Map Exhibits	A1-A6
Appendix B Existing Intersection IDS	B1-B6
Appendix C Alternative A IDS	C1-C6
Appendix D Alternative B IDS	D1-D7
Appendix E Alternative C IDS	E1-E6
Appendix F Forest Preserve Visitor Data	F1-F2
Appendix G CMAP Traffic Projections.....	G1-G3
Appendix H Design Criteria and Design Calculations	H1-H15
Appendix I Auxiliary Lane Warrant Analysis.....	I1-I3
Appendix J Capacity Analysis Worksheets	J1-J11
Appendix K Site Visit Photo Log.....	K1-K20
Appendix L Greene Valley Master Plan.....	L1-L3
Appendix M Existing - Traffic Signal and All-Way STOP Warrant Analysis.....	M1-M7
Appendix M Proposed - Traffic Signal and All-Way STOP Warrant Analysis	N1-N7

Traffic Study
Table of Contents

List of Tables:

Table 1: Crash Data Summary Table	13
Table 2: Level of Service Summary.....	19
Table 3: Level-of-Service and Queue Analysis Summary	20
Table 4: Alternatives - LOS, Delay & Queue Analysis Summary	31-32
Table 5: Comparison of Intersection Conflict Points.....	34
Table 6: Preliminary Cost estimate of Alternatives (in \$1,000).....	35
Table 7: Summary of Existing Conditions and Proposed Alternatives Evaluation ...	37-38

List of Exhibits:

Exhibit 1 - Site Location Map.....	7
Exhibit 2 – Existing Year (2025) Traffic Volumes	11
Exhibit 3 – No-Build (2050) Projected Traffic Volumes.....	15
Exhibit 4 – Projected (2050) Traffic Volumes	22
Exhibit 5 – Vehicle Conflict Point Diagram	33

Executive Summary

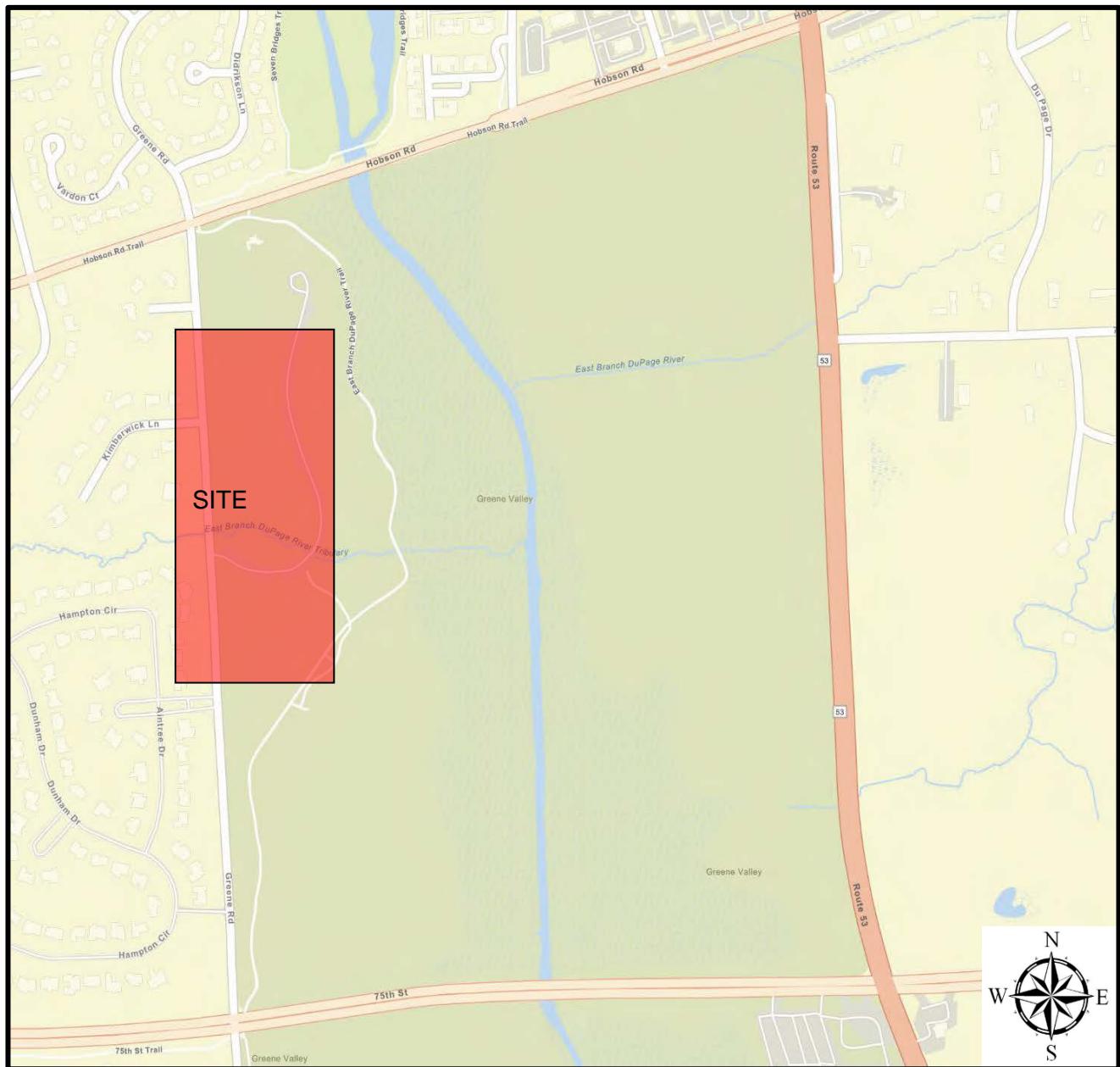
Stantec conducted a Traffic Study to evaluate the existing access and relocation alternatives for the entrance to the Greene Valley Forest Preserve of the Forest Preserve District of DuPage County (FPDDC), located on east side of Greene Road between Hobson Road and 75th Street. The existing entrance location and relocation alternatives for the study area have been described, analyzed and evaluated with respect to traffic operations, sight distance, and safety. The Traffic Study Summary is presented below:

- The entrance to the Greene Valley Forest Preserve Picnic Area and Off-Leash Dog Area is located approximately 0.25 miles south of Hobson Road and 0.35 miles north of 75th Street and is the only entrance to the park.
- Existing Annual Daily Traffic (ADT) for Greene Road within study area was established using Illinois Department of Transportation (IDOT) – IROADS website - [IROADS - Illinois Roadway Analysis Database System](#)
- Traffic Volumes for the entrance were established based on Forest Preserve visitor data.
- Crash Data was reviewed and considered for the last 11 years (2014-2025) from [DuPage County Illinois Crashes by Year](#) website.
- DuPage County's 1 foot LiDAR data was used for the existing terrain.
- Peak AM and Peak PM traffic volumes were developed using available information.
- Information received from the Chicago Metropolitan Agency for Planning (CMAP) was used for projecting traffic volumes for 2050.
- Existing conditions, including typical sections, alignment, profiles, and other roadway elements, were documented.
- An Auxiliary Lane Warrant Analysis was conducted, and the results indicate that no additional left-turning lane is warranted for southbound Greene Road, and no additional right-turning lane is warranted for northbound Greene Road.
- An Intersection Design Study (IDS) was prepared for the existing entrance at Greene Road.
- Geometric elements, including horizontal alignment, vertical profile, and sight lines, were evaluated. The analysis indicates that the existing entrance does not provide the minimum required vertical and intersection sight distance.
- A Capacity and Queue Analysis was conducted for the existing intersection under Existing (2025) and No-Build (2050) conditions. The intersection is expected to operate at an acceptable Level of Service (LOS) for both existing and future 2050 traffic volumes.
- Three alternatives were evaluated for relocating the existing entrance.

- Alternative A – Relocation of the existing entrance across from Kimberwick Lane, forming a four-legged intersection with Greene Road (north–south), Kimberwick Lane (west), and the relocated entrance (east).
- Alternative B – Relocation of the existing entrance across from Kimberwick Lane, forming a four-approach mini-roundabout with Greene Road (north–south), Kimberwick Lane (west), and the relocated entrance (east).
- Alternative C – Relocation of the existing entrance to a location north of Kimberwick Lane and south of Oxer Court.
- Intersection Design Studies (IDS) were conducted for each of the three alternatives.
- Capacity and Queue Analyses were performed for all three alternatives for Future Year (2050) traffic volumes. Results indicate that all alternatives operate at an acceptable Level of Service (LOS).
- The geometric and operational advantages of each alternative were evaluated and compared.
- It is recommended that the Forest Preserve entrance be relocated north of Kimberwick Lane and constructed as an offset T-intersection (**Alternative C**), with STOP control provided on the relocated Forest Preserve entrance approach only.

Introduction

Stantec has conducted a Traffic Study to evaluate the existing entrance and relocation alternatives for the Greene Valley Forest Preserve entrance. The existing park entrance is located on the east side of Greene Road between Hobson Road and 75th Street, with STOP control provided on the entrance approach only. The site location is shown in **Exhibit 1**.


An Intersection Design Study (IDS) was prepared to evaluate traffic operations and intersection performance for the following conditions and alternatives:

- Existing Condition: Analysis of the existing Greene Valley Forest Preserve entrance.
- Alternative A: Relocation of the existing entrance across from Kimberwick Lane, forming a four-legged intersection with Greene Road (north–south), Kimberwick Lane (west), and the relocated entrance (east).
- Alternative B: Relocation of the existing entrance across from Kimberwick Lane, forming a four-approach mini-roundabout with Greene Road (north–south), Kimberwick Lane (west), and the relocated entrance (east).
- Alternative C: Relocation of the existing entrance to a location north of Kimberwick Lane and south of Oxer Court.

The following elements were evaluated as part of all Intersection Design Studies (IDS):

- Horizontal alignment
- Vertical profiles
- Sight lines
- Design detail sheets
- AutoTurn vehicle Movements
- Capacity Analysis

Exhibit 1 - Site Location Map

Existing Conditions

Area Land Use

The Study Area/Site is located on Greene Road, located 0.1 mile south of Hobson Road to 0.3 mile north of 75th Street for an approximate total distance of 0.3 miles. It is bound by single family homes to the west and by Greene Valley Forest Preserve to the east.

Street/Roadway Network

Greene Road

Within the Traffic Study Area, Greene Road is a north-south, major collector roadway under the jurisdiction of Lisle Township Highway Department. On north side of the study limits, Greene Road has a signalized intersection with Hobson Road and on the south side of the limits, Greene Road has a signalized intersection with 75th Street. It generally has a two-lane cross-section, one lane in each direction. All existing base conditions are shown in **Appendix A**.

Lane Width (Typ.) :12'

Posted Speed Limit: 35 Mph

Pedestrian and Bike Facilities: Not Present

5 TON truck weight restriction

Side Roads (From North to South)

1. Oxer Court

Oxer Court is a residential local street located on the west side of Greene Road, approximately 340 feet (0.06 mile) south of Hobson Road.

2. Kimberwick Lane

Kimberwick Lane is a side road located on the west side of Greene Road, approximately 830 feet (0.15 mile) south of Hobson Road. It is a residential street with no outlet and forms a T-intersection with Greene Road. There is no traffic control on either Greene Road or Kimberwick Lane at this location. No pedestrian or bicycle facilities are present along Kimberwick Lane.

3. Greene Valley Preserve Entrance

The Greene Valley Forest Preserve entrance is located on the east side of Greene Road, approximately 0.25 miles south of Hobson Road. The entrance provides access to the off-leash dog area parking lot and has no

additional outlet. The entrance forms a T-intersection with Greene Road and is STOP-controlled on the preserve entrance approach, with no traffic control on Greene Road.

4. Stonehedge Drive

Stonehedge Drive is a side road located on the west side of Greene Road, approximately 0.4 miles south of Hobson Road. It is a residential street and is not within the project study limits.

Existing Terrain

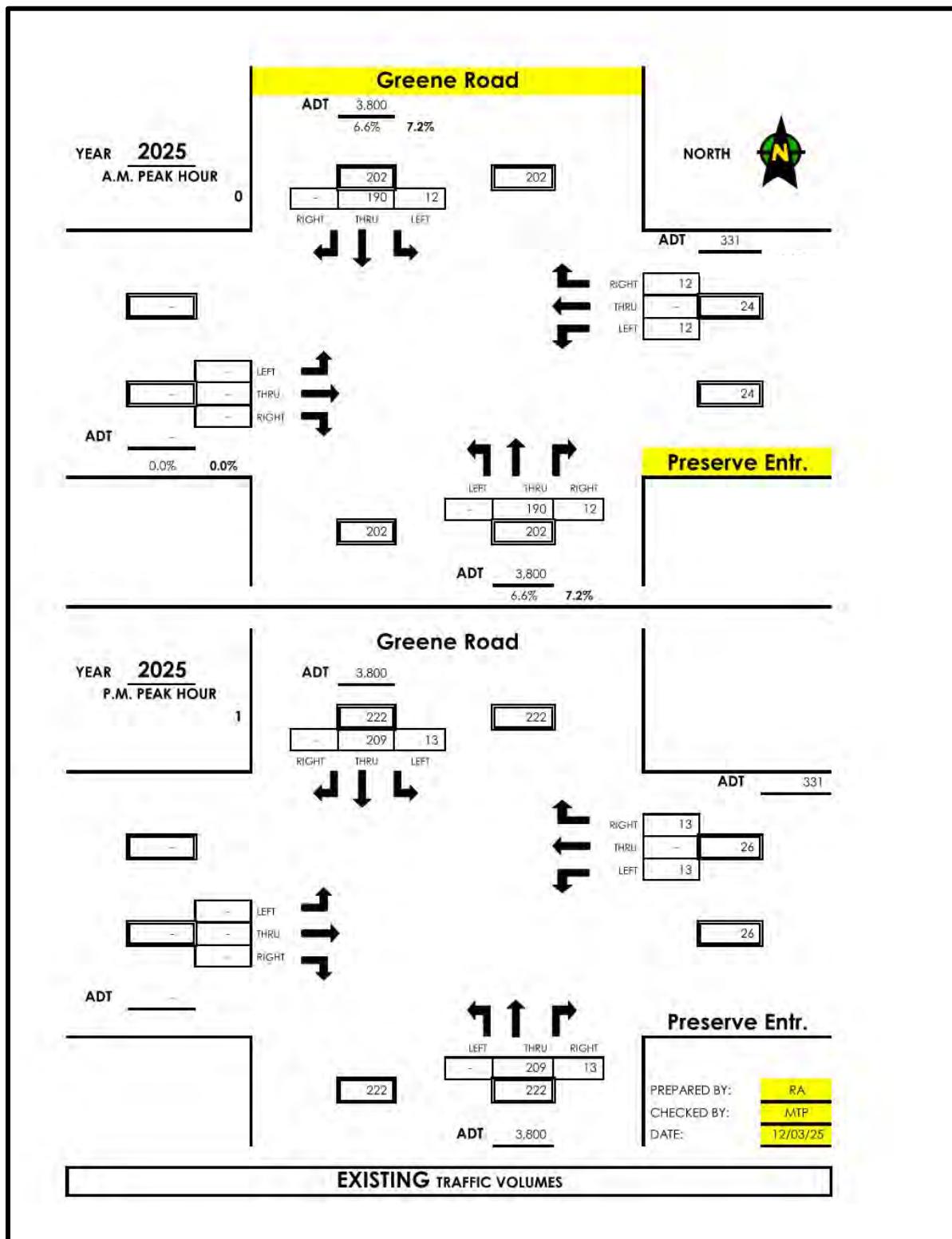
An existing terrain model was developed for the project limits using DuPage County's 1-foot LiDAR data. The existing terrain was used to evaluate existing vertical profiles.

Existing Traffic

Traffic data was obtained from IDOT IROADS to determine ADT, expressed in vehicles per day (vpd), for Greene Road. In addition, visitor data provided by the Forest Preserve for the past five years was used to establish traffic volumes associated with the preserve entrance. The methodologies used to develop existing traffic volumes and peak hours are summarized below.

Methodology for establishing Existing Traffic Volumes for Preserve Entrance:

- The ADT for the Forest Preserve entrance was estimated to be 331 vpd based on five years of visitor data (see Appendix F).
- The AM peak hour was identified as 11:00 AM to 12:00 PM, and the PM peak hour was identified as 5:00 PM to 6:00 PM.
- Peak hour volumes were estimated at 24 vehicles per hour (vph) during the AM peak and 26 vph during the PM peak.
- Traffic volumes exiting the Forest Preserve were assumed to be equal to the volumes entering the preserve during the corresponding peak hours.
- Turning movement volumes were assumed to be evenly split, with 50 percent left-turning and 50 percent right-turning traffic, and no through movements at the existing entrance.


Methodology for Establishing Existing Traffic Volumes on Greene Road:

- The existing Average Daily Traffic (ADT) on Greene Road is 3,800 vpd based on data obtained from IDOT IROADS.
- Traffic volumes were assumed to be evenly distributed by direction, with 50 percent northbound (NB) and 50 percent southbound (SB) traffic, resulting in 1,900 vpd in each direction.

- The AM peak-hour volume was assumed to be 10 percent of ADT. All Greene Road traffic was assumed to be through traffic, resulting in 190 through vph in each direction during the AM peak hour.
- For the PM peak hour, through volumes were increased by the same factor observed in the Forest Preserve entrance data ($26/24 \approx 1.1$). Accordingly, PM peak-hour through volumes on Greene Road were estimated to be 209 vph in each direction.
- For the purposes of analysis, all single-unit (SU) and multi-unit (MU) truck traffic was assumed to operate as through traffic for movements on Kimberwick Lane and at the Forest Preserve entrance.
- Forest Preserve entrance data was used to estimate turning movement volumes into the preserve. Turning volumes were assumed to be evenly split directionally, with 50 percent of vehicles arriving from the NB Greene Road approach and 50 percent from the SB Greene Road approach. The AM and PM peak hour volumes were estimated to be 12 vph and 13 vph, respectively (see Appendix F).
- The AM peak hour was identified as 11:00 AM to 12:00 PM, and the PM peak hour was identified as 5:00 PM to 6:00 PM, based on peak hourly visitor activity at the Forest Preserve.

The existing peak-hour traffic volumes are illustrated in **Exhibit 2**.

Exhibit 2 – Existing Year (2025) Traffic Volumes

Crash Analysis

To evaluate potential safety issues within the study area, crash data was obtained from the following sources:

- DuPage County Crash website: [DuPage County Illinois Crashes by Year](#) database, used to obtain crash data for the years 2014 through 2024.
- IDOT Division of Transportation Safety: Crash data for the most recent five calendar years (2020–2024).
- Law enforcement reports: Crash reports for the period 2021 through 2025 (through November 22, 2025).

DuPage County crash data was primarily used for the crash analysis, as the crash data provided by IDOT for the years 2020 through 2024 were consistent with the DuPage County crash records. For calendar year 2025 (through November 22), crash data was available only from law enforcement reports.

A summary of the crash data for study area, along Greene Road between Oxer Court and Stonebridge Drive, is provided in **Table 1**. A review of available crash data along Greene Road and at the intersections with the Forest Preserve entrance, Kimberwick Lane, Stonebridge Drive, and Oxer Court identified **eight (8)** reported crashes between 2014 and 2025. All reported crashes resulted in property damage only, with no injuries or fatal crashes recorded.

The documented crash types included front to rear, fixed-object, angle, sideswipe, turning and animal crashes. Reported contributing factors primarily involved failure to yield right-of-way, following too closely, improper lane usage, speeding, and driver condition, where available.

88% of the crashes occurred under dry and clear weather conditions, indicating that adverse weather was not a primary contributing factor. 50% of the crashes were concentrated near the Greene Road and Kimberwick Lane intersection, suggesting localized turning-movement and right-of-way conflicts within the study area. Kimberwick Lane approach at Greene Road operates as an uncontrolled approach, with no STOP or YIELD control provided.

Field observations along Kimberwick Lane at Greene Road indicate the presence of roadside light poles and overhead utility lines near the roadway. These fixed objects contribute to constrained roadside conditions along the Kimberwick Lane approach. In August 2025, a vehicle struck one of the light poles, causing it to fall and contact overhead power lines. While no injuries were reported, the incident caused a power outage for residents along Kimberwick Lane and required utility response.

The presence of light poles and overhead utilities near the roadway increases the potential severity of run-off-road and fixed-object crashes and may adversely affect nighttime visibility and overall intersection safety. These conditions were considered as part of the safety evaluation for the Kimberwick Lane approach.

Table 1: Crash Data Summary Table

Data Source	Date	Nearest Intersection (Latitude/Longitude)	Crash Type – Cause - Damage Type	Conditions
DuPage County	8/6/2014	Forest Preserve Entrance (41.753619/-88.074755)	Rear end - Following too closely - Property Damage Only	Dry and Clear
DuPage County	8/21/2014	Forest Preserve Entrance (41.754903/-88.074816)	Fixed Object – Driver Condition - Property Damage Only	Dry and Clear
DuPage County	5/17/2015	Greene and Stonebridge Intersection (41.752931/-88.074700)	Fixed Object – Speeding - Property Damage Only	Dry and Clear
DuPage County	12/19/2015	Greene and Kimberwick Intersection (41.755980/-88.074900)	Crossing Animal – None - Property Damage Only	Dry and Clear
DuPage County	1/13/2016	Greene and Oxer Intersection (41.757504/-88.075000)	Sideswipe - Improper Lane Usage - Property Damage Only	Dry and Clear
DuPage County	10/28/2017	Greene and Kimberwick Intersection (41.756200/-88.074900)	Angle - (Information Not available) - Property Damage Only	Dry and Clear
Law Enforcement Report	8/27/2022	Greene and Kimberwick Intersection (41.753116/-88.074734)	Turning Traffic - Failure to yield right of way - Property Damage Only	Dry, Clear and Daytime
Law Enforcement Report	8/25/2025	Greene and Kimberwick Intersection (41.756201/-88.074921)	Fixed Object - (Information Not available) - Property Damage Only	Night

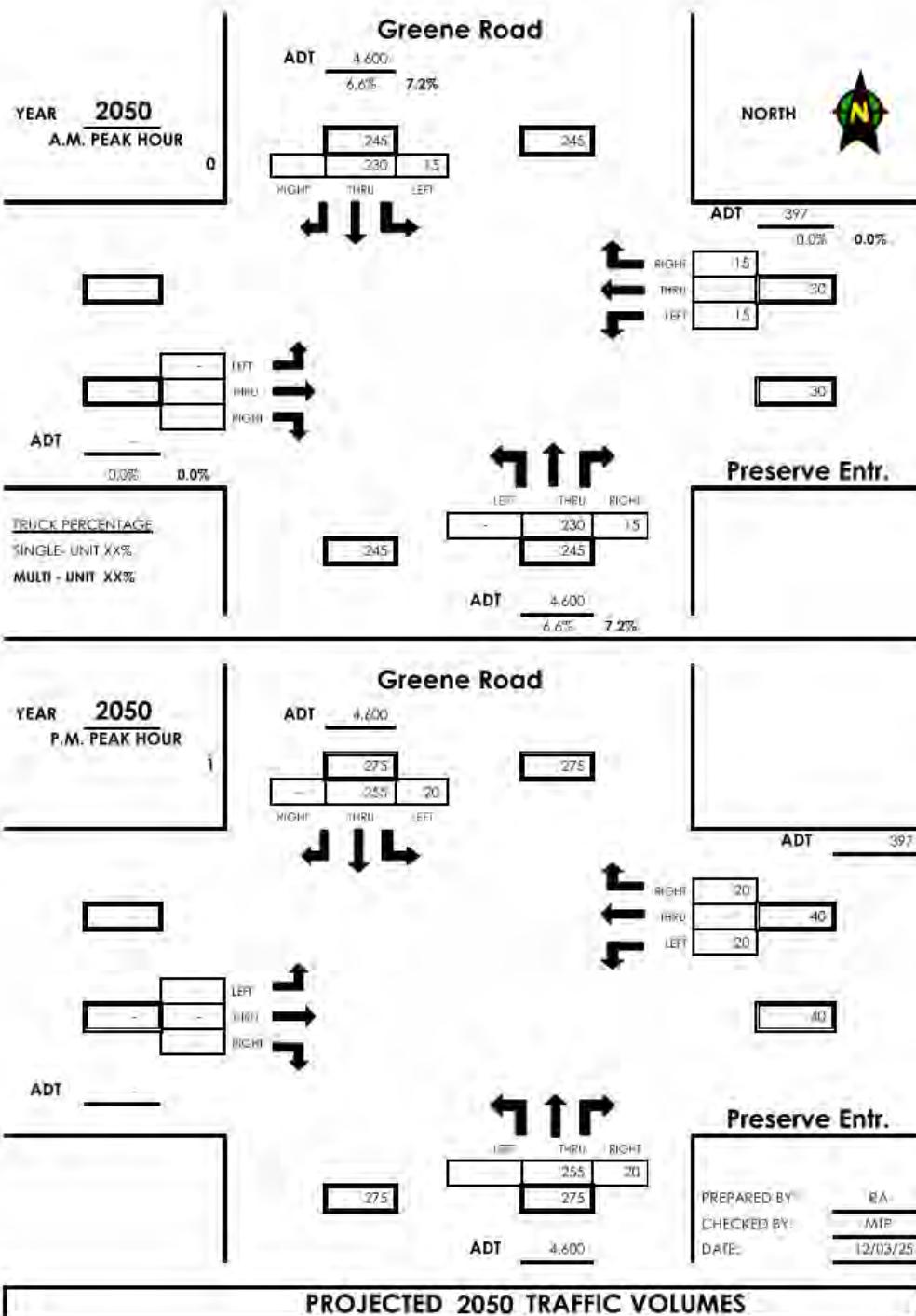
Future Conditions

Traffic Growth

Based on the Chicago Metropolitan Agency for Planning (CMAP) 2050 projections (see Appendix G), traffic volumes on Greene Road are expected to increase at an annual compound growth rate of approximately 0.94 percent, resulting in an overall increase of approximately 20 percent over the next 25 years.

Future Traffic Volumes

Methodology for Establishing Future traffic Volumes:


- Year 2050 was selected as the future No-Build design year for the traffic operations analysis.
- Based on CMAP 2050 projections, the future ADT on Greene Road was estimated to be 4,600 vpd.
- Traffic volumes associated with the Forest Preserve entrance were assumed to increase by the same percentage as Greene Road traffic, representing an approximate 20 percent increase over the next 25 years. Accordingly, the future ADT for the Forest Preserve entrance was estimated to be 397 vpd. Turning movements were assumed to be evenly split, with 50 percent left-turning and 50 percent right-turning traffic.
- For the purposes of analysis, all single-unit (SU) and multi-unit (MU) truck traffic was assumed to operate as through traffic for movements on Kimberwick Lane and at the Forest Preserve entrance.
- No traffic growth was assumed for Kimberwick Lane, as no additional development or changes in land use are anticipated along this roadway.
- All future traffic volumes were rounded to the nearest multiple of five for analysis purposes.

The future peak-hour traffic volumes are illustrated in **Exhibit 3**.

Greene Valley Forest Preserve Development Plans

The Forest Preserve District of DuPage County has an approved Master Plan for the Greene Valley Forest Preserve. The framework plans proposed for development of the Greene Valley Forest Preserve between Hobson Road and 75th Street are provided in **Appendix L** for reference.

Exhibit 3 – No-Build (2050) Projected Traffic Volumes

Greene Road and Existing Forest Preserve Entrance Analysis

Traffic Control and Warrant Analysis

Traffic signal and all-way STOP warrant analyses were conducted in accordance with the Manual on Uniform Traffic Control Devices (MUTCD). The data inputs and detailed warrant evaluation results are provided in **Appendix M (Exhibits M1 through M6)**. The analyses indicate that **neither traffic signal control or all-way STOP control is warranted** at the study intersection under existing traffic conditions.

Based on the warrant analysis results and engineering judgment, STOP control at the existing entrance remains the most appropriate form of traffic control. This conclusion is supported by traffic volumes and operating speeds along Greene Road, low traffic demand at the existing entrance, adequate gap availability, and the absence of a correctable crash pattern. Maintaining STOP control at the existing entrance provides a clear assignment of right-of-way, minimizes unnecessary delay on Greene Road, and ensures safe and efficient operation for all users.

Auxiliary Lane Warrant Analysis

The IDOT Bureau of Design and Environment (BDE) and Bureau of Local Roads and Streets (BLRS) criteria were used to evaluate the need for auxiliary lanes on Greene Road at the existing Forest Preserve entrance under future (2050) traffic conditions.

Section 36-3 of the IDOT BDE Manual provides guidance for evaluating right-turn and left-turn lane warrants. Based on the design speed of 40 mph for Greene Road and the projected approach traffic volumes, a northbound right-turn lane is **not warranted** at the Forest Preserve entrance.

In addition, Figure 36-3.G of the IDOT BDE Manual was used to evaluate left-turn lane warrants. Based on the projected southbound advancing volumes and northbound opposing volumes, a southbound left-turn lane is **not warranted** at the Forest Preserve entrance. A summary of the application of the turn-lane warrant analysis is provided in **Appendix I**.

Intersection Design Study (IDS)

An Intersection Design Study (IDS) is a graphical representation of existing and proposed intersection configurations and is based on an evaluation of traffic demands and physical conditions at the intersection.

An IDS was prepared for the existing intersection to evaluate geometric elements and operational performance. All IDS exhibits related to the existing intersection are provided in **Appendix B**.

Horizontal Alignment & Vertical Profile Analysis

Horizontal alignments and vertical profiles were developed for Greene Road, the existing Forest Preserve entrance, and Kimberwick Lane using available survey data, aerial imagery, and the existing terrain model.

The Greene Road horizontal alignment was developed for the relevant study limits using existing topographic and aerial data. No horizontal curves are present within the existing alignment; however, a deflection angle of $0^\circ 35' 51.2''$ occurs at Station 32+37.14, which is less than the 1-degree deflection permitted under IDOT BLRS criteria without the use of a horizontal curve. Accordingly, the existing alignment meets IDOT BLRS requirements.

The Greene Road vertical profile was developed using the existing terrain model. No grades exceeding 5 percent were identified within the study limits. Three vertical curves are present: one crest curve north of the existing entrance, one sag curve at the entrance, and one crest curve south of the existing entrance.

The sag vertical curve at the existing entrance provides approximately 225 feet of stopping sight distance (SSD), which is less than the required 305 feet for a 40-mph design speed and therefore does **not** meet IDOT SSD criteria. Refer to **Appendix H (Exhibit H5)** for calculations and supporting documentation.

The horizontal alignment for the existing Forest Preserve entrance was developed for the relevant approach limits. The existing vertical profile was created using the existing terrain model to evaluate grades, which were found to be acceptable and meet IDOT BLRS criteria.

Similarly, the horizontal alignment for Kimberwick Lane was developed for the relevant study limits. The existing vertical profile was created using the existing terrain model to evaluate grades, which were also found to be acceptable and meet IDOT BLRS criteria.

Refer to **Appendix A (Exhibit A5)** for the Kimberwick Lane and existing Forest Preserve entrance profiles. Refer to **Appendix B (Exhibit B4)** for the best-fit profile of Greene Road

Intersection Sight Distance Analysis & Tree Removal

Intersection sight distance is the distance required for a driver without the right-of-way to perceive, react to, and safely avoid conflicts with approaching vehicles. Adequate intersection sight distance is provided through the establishment of sight triangles, which allow drivers to observe and respond to potentially conflicting traffic movements.

Sight triangles were developed for the existing Forest Preserve entrance in accordance with applicable standards and adjusted to reflect a 4 percent roadway grade (see Appendix H, Exhibits H10 through H12). The required intersection sight distance was determined to be approximately 445 feet to the south and 455 feet to the north of the entrance.

Within the required sight triangles, five trees were identified on the south side of the entrance and four trees were identified on the north side (refer to Appendix B, Exhibit B2). Of the nine trees identified within the sight triangles, two trees on the south side have trunk diameters greater than 24 inches, while the remaining trees have small trunk diameters less than 15 inches. Refer to **Appendix B (Exhibit B2)** for the intersection sight triangle exhibit.

Physical Elements of Intersection

The existing entrance to the Greene Valley Forest Preserve is located on the east side of Greene Road (north-south) and forms a T-intersection with Greene Road. There are no existing light poles. The intersection is STOP-controlled on the Forest Preserve entrance approach. Physical elements of the intersection are illustrated in **Appendix B (Exhibit B3)**.

Design Vehicle and AutoTurn vehicle Movements

movement exhibits are provided in **Appendix B (Exhibit B5)**.

Single Unit (SU) truck was selected as the design vehicle for the intersection in accordance with Figure 34-1G of the IDOT BLRS Manual (see standards in **Appendix H, Exhibit H9**). While a 5-ton weight restriction is posted along this segment of Greene Road, the SU design vehicle was selected for geometric evaluation purposes only to conservatively represent the largest single-unit vehicle reasonably expected to access the Forest Preserve entrance, including maintenance and emergency vehicles that may legally operate under the posted restriction.

AutoTURN analysis was performed to evaluate SU truck turning movements to and from the existing Forest Preserve entrance. The analysis indicates that a SU truck can successfully complete all ingress and egress movements while meeting applicable IDOT BLRS geometric design guidelines.

AutoTURN movement exhibits are provided in **Appendix B (Exhibit B5)**.

Capacity and Queue Analysis

A primary result of a capacity analysis is the assignment of Level of Service (LOS) to traffic facilities under varying traffic flow conditions. The capacity analysis methodology is based on the concepts and procedures outlined in the Transportation Research Board's (TRB) Highway Capacity Manual (HCM).

Level of Service (LOS) is defined as a qualitative measure that describes operational conditions within a traffic stream and the perception of those conditions by motorists and/or passengers. LOS provides an index of traffic flow quality based on factors such as speed, travel time, freedom to maneuver, traffic interruptions, comfort, convenience, and safety.

Six levels of service are defined for each type of facility and are designated by letters A through F, with LOS A representing the best operating conditions and LOS F representing the worst. LOS C is typically considered acceptable for design purposes, while LOS D is often regarded as the lower threshold of acceptable operations. Because LOS is dependent on traffic demand, a roadway or intersection may operate at different LOS values depending on the time of day, day of week, or season. A description of the operating conditions under each level of service is provided in **Table 2**.

Capacity and queue analyses were conducted for Existing (2025) and No-Build (2050) Projected traffic volume conditions using the procedures described above. The results of the intersection analyses are discussed in the following sections and are summarized in **Table 3**. Detailed analysis worksheets are provided in **Appendix J**.

Greene Road and Existing Entrance

Under both existing (2025) and future No-Build (2050) traffic conditions, all movements at the unsignalized intersection of Greene Road and the existing Forest Preserve entrance are expected to operate at acceptable levels of service (LOS B or better) during both peak hours analyzed.

Table 2: Level of Service Summary

LOS	Description	Average Control Delay (sec/veh)
		Unsignalized
A	Describes conditions with little to no delay to motorists.	≤ 10
B	Represents a desirable level with relatively low delays to motorists.	>10 and <15
C	Describes conditions with average delays to motorists.	>15 and ≤ 25
D	Describes operations where the influence of congestion becomes more noticeable. Delays are still within an acceptable range.	>25 and ≤ 35
E	Represents operating conditions with high delay values. This level is often considered within urban settings or for minor streets intersecting major arterial roadways to be the limit of acceptable delay.	>35 and ≤ 50
F	Is considered unacceptable to most drivers with high delay values that often occur when arrival flow rates exceed the capacity of the intersection	>50

Table 3: Level-of-Service and Queue Analysis Summary

Intersection/Peak Hour/Movement	Existing			Projected 2050		
	Delay ¹	LOS ²	Queue ³	Delay ¹	LOS ²	Queue ³
Weekday AM						
Greene Road SB- Left Turn	0.1	A	-	0.1	A	-
Greene Road SB- Through	7.7	A	0	7.8	A	0
West Approach - Forest Preserve Entrance	10.5	B	2.5	11.1	B	5.0
Weekday PM						
Greene Road SB- Left Turn	0.1	A	-	0.2	A	-
Greene Road SB- Through	7.7	A	0	7.9	A	0
West Approach - Forest Preserve Entrance	10.7	B	2.5	11.7	B	5.0

¹Average control delay in seconds per vehicle.

²Level of service.

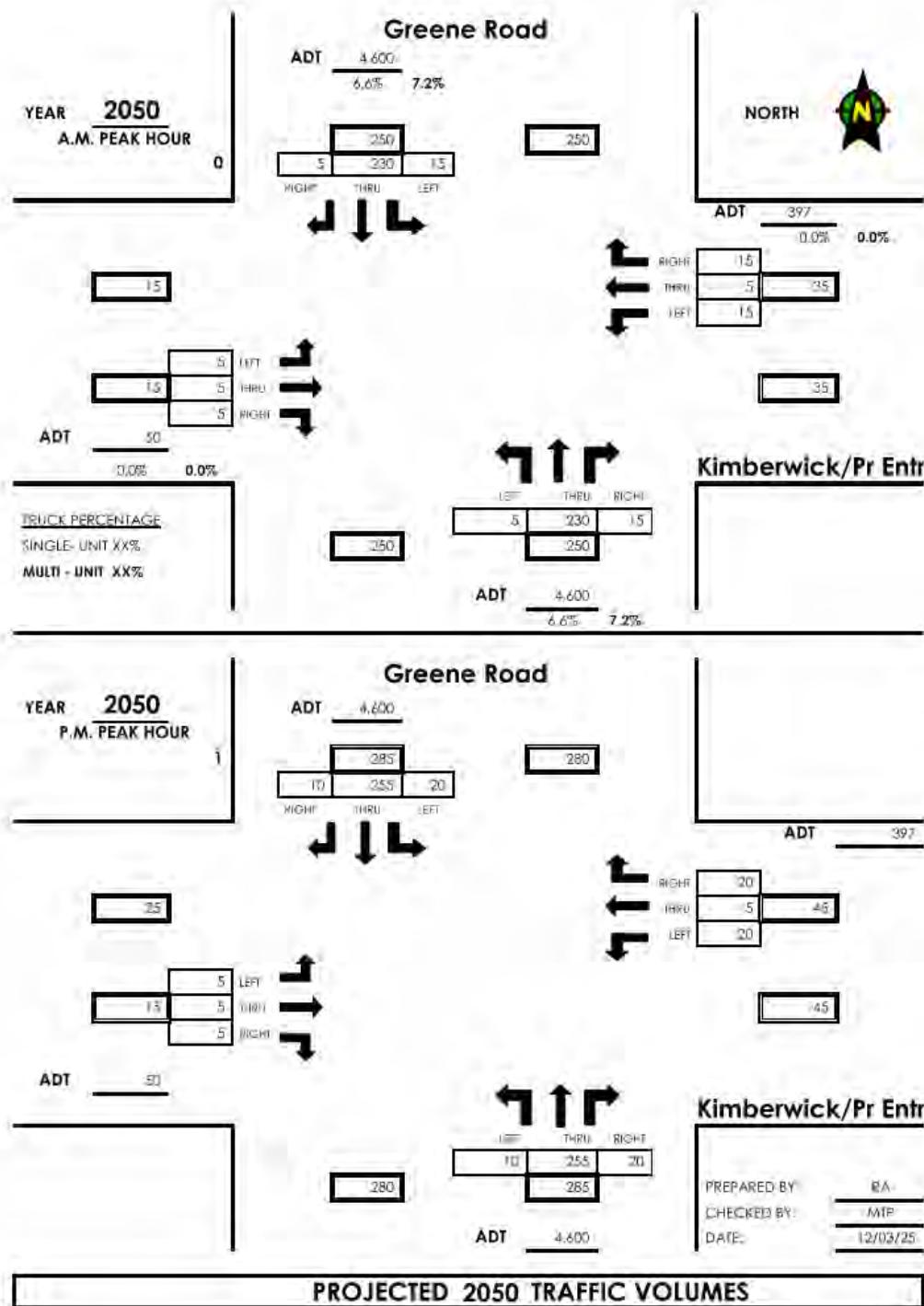
³95th percentile queue length in feet per lane.

Alternative Forest Preserve Entrance Locations Analysis

Three alternatives were evaluated for relocating the existing entrance. All three alternatives are located along Greene Road, north of the existing entrance location.

- Alternative A: Relocation of the existing entrance across from Kimberwick Lane, forming a four-legged intersection with Greene Road (north–south), Kimberwick Lane (west), and the relocated entrance (east).
- Alternative B: Relocation of the existing entrance across from Kimberwick Lane, forming a four-approach mini-roundabout with Greene Road (north–south), Kimberwick Lane (west), and the relocated entrance (east).
- Alternative C: Relocation of the existing entrance to a location north of Kimberwick Lane and south of Oxer Court.

Kimberwick Traffic Volumes


All other assumptions and inputs are documented in the existing and future conditions sections. Traffic volumes for Kimberwick Lane were developed based on land use characteristics, as described below:

- Kimberwick Lane is a low-volume local residential street serving eleven single-family homes and terminating in a cul-de-sac. Traffic on Kimberwick Lane is limited to local residential and service vehicles. Assuming two vehicles per household and accounting for infrequent service and delivery activity, a conservative maximum daily traffic volume of 50 vehicles was assumed to use Kimberwick Lane.
- As noted previously, the AM peak hour was assumed to occur between 11:00 AM and 12:00 PM, and the PM peak hour was assumed to occur between 5:00 PM and 6:00 PM.
- For the AM peak hour, turning movement volumes were assumed at the Kimberwick Lane intersection due to very low residential traffic demand. A total of 15 vehicles were assumed to approach the intersection from Kimberwick Lane, consisting of 5 left-turning vehicles (northbound) onto Greene Road, 5 vehicles continuing through to the relocated Forest Preserve entrance, and 5 right-turning vehicles (southbound) onto Greene Road. Turning volumes entering Kimberwick Lane were assumed to be equal to the volumes exiting Kimberwick Lane.
- For the PM peak hour, traffic exiting Kimberwick Lane was assumed to be the same as the AM peak hour due to very low residential traffic demand. Traffic entering Kimberwick Lane during the PM peak hour was intentionally assumed at conservative, worst-case levels that exceed realistic residential demand and are not expected to occur, reflecting potential return trips from work and school. These conservative assumptions include 10 vehicles entering from the northbound Greene Road approach, 10 vehicles entering from the southbound Greene Road approach, and 5 vehicles entering from the relocated Forest Preserve entrance.

Year 2050 peak-hour traffic volumes are illustrated in **Exhibit 4**.

Exhibit 4 – Future 2050 Traffic Volumes

Alternative A: Four-Legged Intersection

This alternative involves relocating the Forest Preserve entrance to a location across from Kimberwick Lane, forming a conventional four-legged intersection with Greene Road (north–south), Kimberwick Lane (west), and the relocated Forest Preserve entrance (east).

Intersection Design Study (IDS)

An Intersection Design Study (IDS) was prepared for each of the proposed alternative intersections to evaluate the required physical elements and anticipated operational performance. A design speed of 30 mph was assumed for the new entrance approach. All Intersection Design Study (IDS) exhibits related to this proposed alternative are provided in **Appendix C**.

Horizontal Alignment

The horizontal alignment was developed by connecting Greene Road to the Forest Preserve parking lot using two reverse curves that meet IDOT BLRS geometric design criteria. Refer to Appendix H (Exhibits H2 and H3) for applicable design criteria. Horizontal alignment details are provided in **Appendix C (Exhibit C1)**.

Vertical Profile

The vertical profile was developed by connecting Greene Road to the Forest Preserve parking lot using a single crest vertical curve with a length of 200 feet and a maximum grade of 4 percent, providing adequate SSD. Refer to **Appendix H (Exhibits H4 and H6)** for applicable design criteria. Vertical profile details are provided in **Appendix C (Exhibit C4)**.

Intersection Sight Distance Analysis

Sight triangles were developed for the proposed entrance approach of the four-legged intersection. For the left-side sight triangle (south side of the proposed entrance), the sight triangle was adjusted to account for a 4 percent grade. The sight triangles were found to be free of obstructions. Applicable design standards are provided in **Appendix H (Exhibits H10 through H12)**. Sight triangle exhibits are included in **Appendix C (Exhibit C2)**.

Physical Elements of Intersection

This alternative includes a relocated entrance to the Greene Valley Forest Preserve on the east side of Greene Road (north–south). The entrance is proposed to operate as a STOP-controlled approach, with STOP control provided for traffic exiting the Forest Preserve to Greene Road and Kimberwick Lane.

A minimum 35-foot return radius is provided at the entrance to accommodate Single Unit (SU) truck ingress and egress movements. Additional physical elements include stop bars and regulatory signage.

Physical elements of the proposed intersection are illustrated in **Appendix C (Exhibit C3)**.

Traffic Control and Warrant Analysis

A traffic control evaluation, including traffic signal and all-way STOP warrant analyses, was conducted for the proposed relocated Forest Preserve entrance at Kimberwick Lane for future 2050 traffic volumes, in accordance with the Manual on Uniform Traffic Control Devices (MUTCD). Traffic volumes, warrant worksheets, and supporting exhibits are provided in **Appendix N (Exhibits N1 through N6)**.

The warrant analysis results indicate that **neither traffic signal control or all-way STOP control is warranted** at the relocated intersection for future (2050) traffic conditions. However, a review of the historical crash experience at Kimberwick Lane, as discussed in crash analysis section, indicates that crashes in the vicinity have primarily been related to right-of-way, turning, and angle movements. Based on the warrant analysis results, observed crash patterns, and engineering judgment, STOP control on both approaches at the relocated Forest Preserve entrance is recommended as the most appropriate form of traffic control. This configuration provides a clear assignment of right-of-way and is expected to reduce the potential for right-of-way-related crashes, including angle and turning conflicts, while maintaining safe and efficient operations for all users.

Design Vehicle and AutoTurn Movements

Single Unit (SU) truck was selected as the design vehicle for the proposed intersection in accordance with Figure 34-1G of the IDOT BLRS Manual. AutoTURN analyses were performed to evaluate SU truck turning movements to and from the proposed entrance location. The analyses indicate that a SU truck can successfully complete all ingress and egress movements while meeting IDOT BLRS design guidelines. Refer to **Appendix H (Exhibit H9)** for applicable design criteria. AutoTURN movement exhibits are provided in **Appendix C (Exhibit C5)**.

Capacity and Queue Analysis

Capacity and queue analyses were conducted for projected (2050) traffic volume conditions using the procedures described previously. Projected 2050 traffic volumes are shown in Exhibit 4.

Under projected 2050 traffic conditions, all movements at the two-way STOP-controlled intersection of Greene Road and the proposed entrance (Alternative A)/Kimberwick Lane are expected to operate at Level of Service (LOS) B or better during both the AM and PM peak hours analyzed. This level of operation meets the IDOT BLRS guideline of LOS D or better. Refer to **Appendix H (Exhibit H14)** for applicable design criteria.

The results of the four-legged intersection analysis, along with the results for the other two alternatives, are compared in **Table 4**. Detailed analysis worksheets are provided in **Appendix J**.

Tree Removal

This alternative will require the removal of a minimum of five trees based on the proposed alignment and vertical profile (**see Appendix C, Exhibit C2**).

Alternative B: Mini-Roundabout

This alternative involves relocation of the existing entrance across from Kimberwick Lane, forming a four-approach mini-roundabout with Greene Road (north-south), Kimberwick Lane (west), and the relocated entrance (east).

Intersection Design Study (IDS)

IDS was prepared to evaluate the required physical elements and anticipated operational performance of the proposed mini-roundabout (Alternative B). A design speed of 30 mph was assumed for the relocated entrance approach, and a design speed of 20 mph was assumed for the roundabout.

All IDS exhibits related to the proposed mini-roundabout are provided in **Appendix D**.

Horizontal Alignment

The horizontal alignment for Alternative B is the same as Alternative A. The alignment was developed by connecting Greene Road to the Forest Preserve parking lot using two reverse curves with a radius of 250 feet, which meet IDOT BLRS geometric design criteria.

Refer to **Appendix D (Exhibit D1)** for horizontal alignment details.

Vertical Profile

The vertical profile for Alternative B is also the same as Alternative A. The profile was developed by connecting Greene Road to the Forest Preserve parking lot using a single crest vertical curve with a length of 200 feet and a maximum grade of 4 percent, providing adequate SSD. Applicable design criteria are provided in **Appendix H (Exhibits H2 and H3)**.

Vertical profile details are provided in **Appendix D (Exhibit D4)**.

Intersection Sight Distance Analysis

Section 36-10.04(p) of the IDOT Bureau of Design and Environment (BDE) Manual defines intersection sight distance as the distance required for a driver without the right-of-way to perceive, react to, and safely avoid conflicts with other vehicles. Intersection sight distance is achieved through the establishment of sight triangles. For roundabouts, the only locations requiring evaluation of intersection sight distance are the entry approaches.

The sight triangle is bounded by roadway segments defining limits away from the intersection on each conflicting approach and by a line connecting those limits. For roundabouts, sight distance legs follow the curvature of the roadway, and distances are measured along the vehicular path, not as straight-line distances.

Vehicles approaching a roundabout entry face conflicting traffic within the circulating roadway and on upstream entries. In most cases, it is desirable to provide no more than the minimum required intersection sight distance, as excessive sight distance can lead to higher vehicle speeds and reduced safety for all users. Applicable IDOT BDE roundabout sight-distance guidelines are provided in Appendix H (Exhibit H13).

Sight triangles were developed for the proposed roundabout layout and are shown in **Appendix D (Exhibit D2)**. Roundabouts require significantly less intersection sight distance compared to conventional intersection alternatives.

Physical Elements of Roundabout

IDOT graphical representations of roundabout design elements are provided in **Appendix H (Exhibit H8)**. The proposed roundabout will operate under YIELD control for all entering traffic from Greene Road, Kimberwick Lane, and the relocated Forest Preserve entrance.

Key geometric features of the proposed roundabout include:

Return radius: 50 feet

Inscribed circle diameter: 70 feet

Central island diameter: 40 feet (traversable)

Circulatory roadway width: 15 feet

The design intent is to allow passenger vehicles and school buses to circulate without traversing the central island, while Single Unit (SU) trucks may traverse the island as needed.

Recommended physical elements of the roundabout are illustrated in Appendix D (Exhibit D3).

Design Vehicle and AutoTurn Movements

School bus and a Single Unit (SU) truck were selected as design vehicles for Kimberwick Lane and the relocated Forest Preserve entrance, respectively, in accordance with Figure 34-1G of the IDOT BLRS Manual.

AutoTURN analyses were performed to evaluate turning movements for:

- School buses entering and exiting Kimberwick Lane, and
- SU trucks entering and exiting the relocated Forest Preserve entrance.

The analyses indicate that school buses can complete turning movements while traversing the central island, and SU trucks can complete turning movements. All simulated movements meet IDOT BLRS design guidelines.

AutoTURN movement exhibits are provided in Appendix D (Exhibit D5 & D6).

Capacity and Queue Analysis

Capacity and queue analyses were conducted for projected (2050) traffic volume conditions using the procedures described previously. Projected 2050 traffic volumes are shown in **Exhibit 4**.

Under projected 2050 traffic conditions, all approaches of the roundabout at Greene Road and the proposed entrance (Alternative B)/Kimberwick Lane are expected to operate at Level of Service (LOS) A during both the AM and PM peak hours analyzed. This level of operation meets the IDOT BLRS guideline of LOS D or better (**see Appendix H – Exhibit H14**).

The results of the capacity and queue analysis for Alternative B, along with the other two alternatives, are compared in **Table 4**. Detailed analysis worksheets are provided in **Appendix J**.

Tree Removal

This alternative will require removal of a minimum of six trees to accommodate the proposed alignment and vertical profile. While the alignment is same as Alternative A, the larger footprint of this alternative results in increased tree impacts (see Appendix D, Exhibit D3).

Alternative C: Offset Intersection

This alternative involves relocation of the existing entrance to a location north of Kimberwick Lane and south of Oxer Court.

Intersection Design Study (IDS)

An Intersection Design Study (IDS) was prepared for Alternative C to evaluate the required physical elements and anticipated operational performance of the proposed offset intersection. A design speed of 30 mph was assumed for the relocated entrance approach.

All IDS exhibits related to Alternative C are provided in **Appendix E**.

Horizontal Alignment

The horizontal alignment for Alternative C was developed by connecting Greene Road to the Forest Preserve parking lot using one horizontal curve with a radius of 700 feet and a curve length of 140 feet, which meets IDOT BLRS geometric design criteria.

Horizontal alignment details are provided in **Appendix E (Exhibit E1)**.

Vertical Profile

The vertical profile for Alternative C was developed by connecting Greene Road to the Forest Preserve parking lot using a single crest vertical curve with a length of 200 feet and a maximum grade of 5 percent, which provides adequate SSD. Applicable design criteria are provided in **Appendix H (Exhibits H4 and H6)**.

Vertical profile details are provided in **Appendix E (Exhibit E4)**.

Intersection Sight Distance Analysis

Sight triangles were developed for the proposed Forest Preserve entrance approach at the offset T-intersection. The sight triangles were found to be free of obstructions.

Applicable intersection sight-distance standards are provided in **Appendix H (Exhibit H10 through H12)**. Sight-distance exhibits are included in **Appendix E (Exhibit E2)**.

Physical Elements of Intersection

The proposed entrance to the Greene Valley Forest Preserve is located on the east side of Greene Road (north-south) and will operate as a STOP-controlled approach, with STOP control provided for traffic exiting the Forest Preserve to Greene Road.

A minimum 35-foot return radius is provided to accommodate Single Unit (SU) truck turning movements. Additional physical elements include stop bars and regulatory signage, as required.

Physical elements of the proposed intersection are illustrated in **Appendix E (Exhibit E3)**.

Design Vehicle and AutoTurn Movements

Single Unit (SU) truck was selected as the design vehicle for Alternative C in accordance with Figure 34-1G of the IDOT BLRS Manual. AutoTURN analyses were performed to evaluate SU truck ingress and egress movements at the proposed entrance.

The analyses indicate that a SU truck can successfully complete all turning movements while meeting IDOT BLRS design guidelines.

AutoTurn movement exhibits are provided in **Appendix E (Exhibit E5)**.

Capacity and Queue Analysis

Capacity and queue analyses were conducted for projected (2050) traffic volume conditions using the procedures described previously. Projected 2050 traffic volumes are shown in Exhibit 4.

Under projected 2050 traffic conditions, all movements at the STOP-controlled intersection of Greene Road and the proposed Forest Preserve entrance (Alternative C) are expected to operate at Level of Service (LOS) B or better during both the AM and PM peak hours analyzed. This level of operation meets the IDOT BLRS guideline of LOS D or better. Refer to **Appendix H (Exhibit H14)** for applicable design criteria.

The results of the four-legged intersection analysis, along with the results for the other two alternatives, are compared in **Table 4**. Detailed analysis worksheets are provided in **Appendix J**.

Tree Removal

This alternative will require the removal of a minimum of three trees (<15") and some shrubs to accommodate the proposed alignment and vertical profile (**see Appendix E, Exhibit E3**).

Comparison of Existing Conditions Versus Alternatives

Traffic Operations

Capacity and queue analyses were conducted for all three alternatives under projected (2050) traffic conditions for both the AM and PM peak hours. All three alternatives are expected to operate at Level of Service (LOS) B or better during both peak periods.

The mini-roundabout alternative provides the lowest overall control delay and offers natural traffic-calming characteristics, including reduced operating speeds and limited traffic platooning on the Greene Road approaches; however, it also results in longer queues on the northbound and southbound Greene Road approaches, which is consistent with typical roundabout operating characteristics.

The existing condition and the offset intersection alternative show similar operational performance, as the offset alternative largely reflects a relocation of the existing entrance. The conventional four-legged intersection results in slightly higher delay and longer queues; however, the differences are minor and not operationally significant.

The results of the intersection analyses are summarized in **Table 4**.

Table 4: Alternatives - LOS, Delay & Queue Analysis Summary

Intersection/Peak Hour/Movement	Project AM Peak 2050			Projected PM 2050		
	Delay ¹	LOS ²	Queue ³	Delay ¹	LOS ²	Queue ³
Existing						
Forest Preserve Entrance -WB	11.1	B	5.0	11.7	B	5.0
Greene Road -NB	-	-	-	-	-	-
Greene Road -SB	0.6	A	0	0.7	A	0
Alternative A – Four-legged Intersection						
Kimberwick Lane EB	12.3	B	2.5	13.1	B	2.5
Forest Preserve Entrance -WB	12.1	B	5.0	13.1	B	7.5
Greene Road -NB	0.2	A	0.0	0.3	A	0.0
Greene Road -SB	0.6	A	0.0	0.7	A	0.0
Alternative B – Mini roundabout						
Kimberwick Lane EB	3.7	A	0.0	3.9	A	0
Forest Preserve Entrance -WB	3.8	A	2.5	4.0	A	2.5
Greene Road -NB	5.0	A	22.1	5.3	A	27.5
Greene Road -SB	5.0	A	22.1	5.4	A	27.5

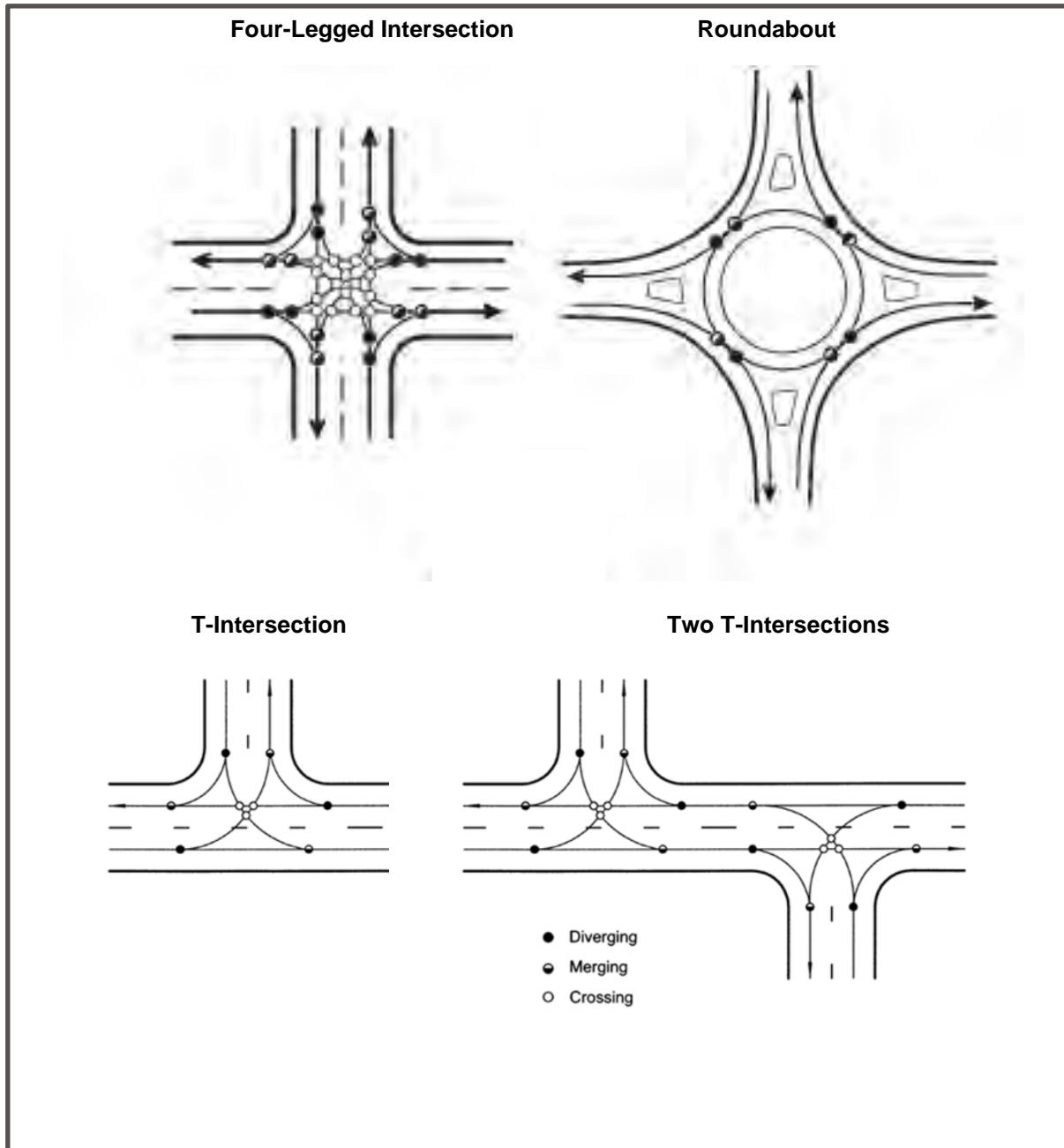
Alternative C – Offset Intersection						
Forest Preserve Entrance -WB	11.1	B	5.0	11.7	B	5.0
Greene Road -NB	-	-	-	-	-	-
Greene Road -SB	0.6	A	0	0.7	A	0

¹Average control delay in seconds per vehicle.

²Level of service. ³95th percentile queue length in feet per lane.

Geometric and Safety Considerations

The existing intersection configuration does not meet current vertical stopping sight distance (SSD) and intersection sight distance criteria. Under existing conditions, the Forest Preserve entrance/Greene Road and Kimberwick Lane/Greene Road intersections function as two isolated T-intersections that are widely spaced and operate independently, with each exhibiting the conflict points typical of a T-intersection.


All three alternatives meet IDOT Bureau of Design and Environment (BDE) and Bureau of Local Roads and Streets (BLRS) geometric design criteria, including requirements for horizontal and vertical alignment, intersection sight distance, and design vehicle accommodation.

The conventional four-legged intersection introduces the greatest number of conflict points and the highest potential conflict severity; however, it maintains a conventional geometric layout that is familiar to drivers.

The mini-roundabout significantly reduces both the number and severity of conflict points, eliminates crossing conflicts, and requires less intersection sight distance compared to conventional intersections.

The offset intersection alternative, consisting of two closely spaced T-intersections, reduces the number and severity of conflict points compared to a conventional four-legged intersection while maintaining a familiar and intuitive intersection form for drivers. Although the intersections are closely spaced, adequate sight distance can be achieved, and the offset configuration offers a balanced approach by improving safety performance relative to a conventional intersection without introducing the operational or geometric changes associated with a mini-roundabout. Vehicle conflict points associated with the conventional four-legged intersection, the two closely spaced T-intersections, and the mini-roundabout are illustrated in **Exhibit 5** and summarized in **Table 5**.

Exhibit 5 – Vehicle Conflict Point Diagram

Table 5: Comparison of Intersection Conflict Points

Type of Conflict Point	Existing Existing Entrance + Kimberwick Lane	Alternative A Four-Legged Intersection	Alternative B Mini - Roundabout	Alternative C Offset Intersection
Diverging Conflicts	3+3	8	4	6
Merging Conflicts	3+3	8	4	6
Crossing Conflicts	3+3	16	0	6
TOTAL CONFLICTS	18	32	8	18

Constructability and Maintenance Considerations

The offset intersection and four-legged intersection alternatives present similar challenges. Both alternatives involve conventional roadway construction techniques, require moderate geometric modifications, and can be implemented within the existing corridor. Long-term maintenance activities, including pavement resurfacing, snow removal, drainage upkeep, and signage maintenance, are expected to be comparable for both alternatives.

The mini-roundabout alternative involves the most complex construction, requiring precise geometric layout, central island construction, splitter islands, and additional pavement markings and signage. While operationally effective, the roundabout introduces higher long-term maintenance considerations, including upkeep of channelization features, pavement markings, signage, and snow removal operations around the central island.

Cost Considerations

A preliminary, planning-level cost estimate was prepared for each alternative and is summarized in **Table 6**. The estimates are based on preliminary quantities, assumed pavement sections, and typical unit prices. A contingency allowance of 30 percent was applied to account for uncertainties associated with preliminary design, assumed quantities, potential utility coordination, maintenance of traffic requirements, and other factors typical of early project development. Cost differences among the alternatives are driven primarily by the longer roadway length associated with Alternative C and the increased construction footprint required for the roundabout in Alternative B.

Table 6: Preliminary Cost estimate of Alternatives (in \$1,000)

Cost Category	Alternative A Four-Legged Intersection	Alternative B Mini - Roundabout	Alternative C Offset Intersection
Earth Excavation	35	36	37
Subgrade Improvement	13	14	14
Base Course	19	19	20
HMA Surface	17	30	17
HMA Binder	17	30	17
Aggregate Shoulders	0	5	0
Curb and Gutter	0	38	0
Pavement Removal	10	40	10
Subtotal	111	212	115
Contingency (30%)	33	64	35
TOTAL	144	276	150

Note: Costs are shown in thousands of dollars and rounded to the nearest \$1,000; contingency is calculated as 30% of subtotal (rounded).

Pedestrian and Bike facilities Considerations

No pedestrian or bicycle facilities currently exist within the study area. All three alternatives are expected to have similar and minimal impacts on pedestrians and bicyclists, with no significant changes to existing non-motorized conditions.

Site-Specific Considerations – Terrain, Geometry & Tree Impact

Terrain and vertical roadway geometry were key site-specific considerations in evaluating the existing condition and the proposed alternatives. Under existing conditions, deficiencies in vertical stopping sight distance and intersection sight distance would require reconstruction of the vertical curve on Greene Road, regarding the Forest Preserve parking lot, and removal of mature trees to fully meet current design criteria. Overall, the existing condition would require removal of approximately nine (9) trees, representing the greatest tree removal among the alternatives evaluated.

The conventional four-legged intersection alternative is located near an existing crest vertical curve on Greene Road. Analyses confirm that adequate stopping sight distance and intersection sight distance can be achieved in accordance with IDOT BLRS criteria. The entrance approach can be constructed without extensive geometric modifications to Greene Road. Compared to the offset intersection alternative, this option requires less earthwork and is located in more favorable terrain, while offering a simpler construction layout than the mini-roundabout alternative. The conventional four-legged intersection is estimated to impact approximately five (5) trees, which is greater than the offset intersection alternative but less than the mini-roundabout alternative.

The mini-roundabout alternative utilizes the same general alignment and vertical profile as the conventional entrance approach; however, the splitter island is located on or near the crest vertical curve on Greene Road. While sight-distance requirements are met, placement of the splitter island on the crest curve introduces additional geometric and constructability considerations, including grading transitions, visibility of channelization features, and maintenance operations. Among the build alternatives, the mini-roundabout would require the greatest degree of reconstruction to Greene Road due to the need for a fully reconstructed intersection geometry, including the central island and splitter islands. This alternative is estimated to impact approximately six (6) trees, representing the highest tree impact among the alternatives evaluated.

The offset intersection alternative is proposed in the area north of Kimberwick Lane and exhibits greater terrain variation, which would require additional earthwork and grading to achieve acceptable vertical geometry. However, these grading adjustments can be accommodated within the roadway corridor and would not result in significant impacts to Greene Road. The offset intersection alternative is estimated to impact approximately three (3) trees, representing the lowest tree impact among the alternatives evaluated.

Table 7: Summary of Existing Conditions and Proposed Alternatives Evaluation

Evaluation Criteria	Existing Entrance	Alternative A Four-Legged Intersection	Alternative B Mini - Roundabout	Alternative C Offset Intersection
Vertical Stopping Sight Distance along Greene Road near entrance location	Does not fully meet criteria	Meets criteria	Meets criteria	Meets criteria
Intersection Sight Distance	Does not fully meet criteria	Meets criteria	Meets criteria	Meets criteria
Vertical Geometry Modifications of Greene Road	Major reconstruction required	No Impact	No Impact	No Impact
Extent of Greene Road Reconstruction	High (vertical curve reconstruction required)	Low	High (full intersection reconstruction required)	Low
Traffic Operations (Future Year)	Acceptable (only with improvements)	Acceptable	Acceptable	Acceptable
Earthwork and Grading Requirements	Low to Moderate	Moderate	Moderate	Moderate to high
Estimated Tree Impacts (Number of Trees)	High (9)	Moderate (5)	Moderate (6)	Low (3)

Traffic Study
Comparison of Existing Conditions Versus Alternatives

Constructability	Moderate	Moderate	Most complex	Moderate
Safety (Number of Conflict Points)	Moderate (18)	Low (32)	High (8)	Moderate (18)
Long-Term Maintenance Considerations	Moderate	Moderate	High	Moderate
Relative Construction Cost	Moderate to high	Moderate	High	Moderate

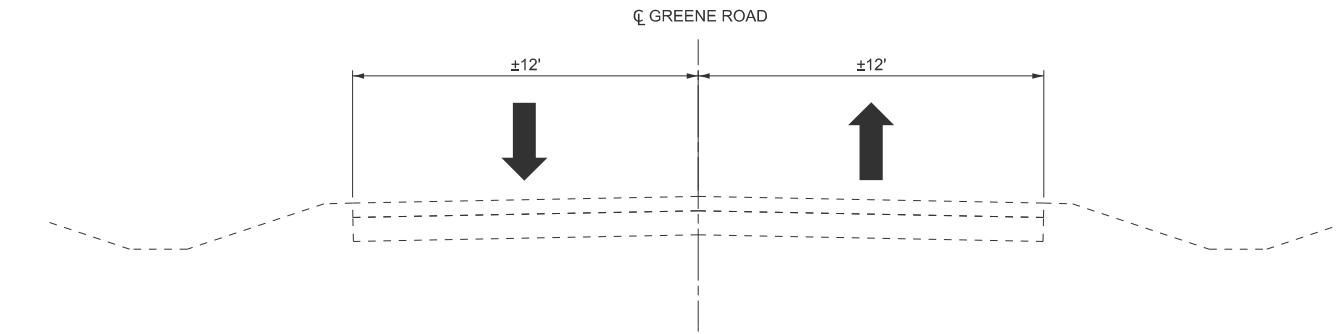
Conclusion and Recommendations

Summary of Existing Conditions and Proposed Alternatives Evaluation is provided in **Table 7**.

Conclusion

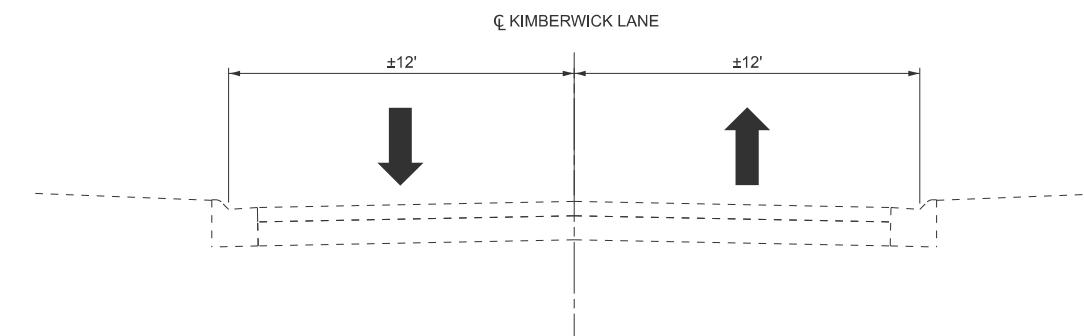
- The existing entrance does not fully meet current IDOT BLRS vertical stopping sight distance and intersection sight distance criteria and would require substantial reconstruction of Greene Road, including vertical curve reconstruction and removal of the greatest number of mature trees, to achieve compliance.
- All three proposed alternatives meet applicable IDOT BLRS design criteria and provide acceptable future traffic operations.
- The four-legged intersection alternative provides acceptable traffic operations and constructability; however, it results in moderate tree impacts and has the highest number of vehicular conflict points among the proposed alternatives.
- The mini-roundabout alternative reduces the number of vehicular conflict points; however, it requires the greatest degree of reconstruction to Greene Road, introduces the highest constructability and long-term maintenance demands, and results in the greatest tree impacts among the proposed alternatives.
- **The offset intersection alternative (Alternative C) provides the most balanced solution among the proposed alternatives by minimizing impacts to Greene Road and adjacent facilities, reducing vehicular conflict points relative to the four-legged intersection, and resulting in the lowest number of tree impacts, while maintaining acceptable traffic operations and constructability.**

Recommended Alternative

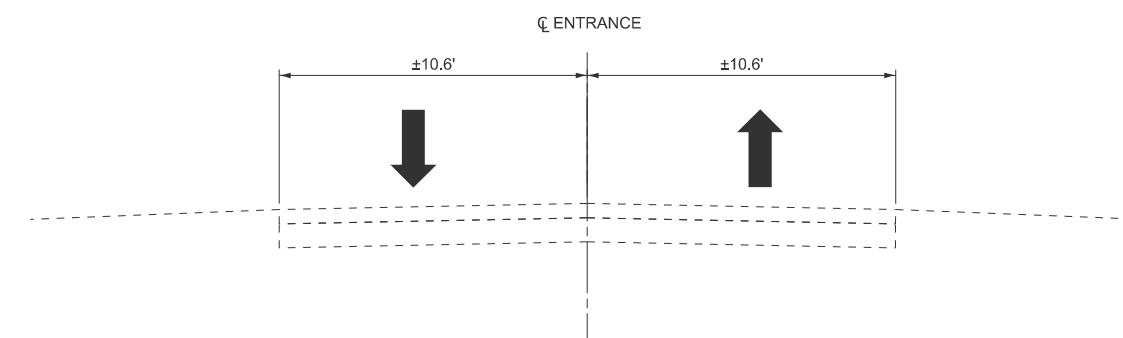

Based on a comparative evaluation of safety, capacity, operations, and cost, **it is recommended that the Forest Preserve entrance be relocated north of Kimberwick Lane and constructed as an offset T-intersection (Alternative C), with STOP control provided on the relocated Forest Preserve entrance approach only.**

Alternative C meets applicable IDOT BLRS design criteria and provides acceptable future traffic operations. This alternative results in fewer vehicular conflict points than the four-legged intersection alternative, requires less long-term maintenance than the mini-roundabout alternative, and has similar overall construction cost like Alternative A. As summarized in Table 7, Alternative C represents a balanced and practical solution for the project site. As the layout and functionality of the Greene Valley Forest Preserve evolve under the Master Plan, the proposed offset entrance provides an appropriate level of safety while maintaining adequate capacity and efficient traffic operations.

As a secondary option, the four-legged intersection alternative (Alternative A) may also be considered. Alternative A meets applicable design criteria and provides acceptable traffic operations, offers a lower overall construction cost, and benefits from driver familiarity with conventional four-legged intersections; however, it results in greater tree impacts and a higher number of vehicular conflict points compared to Alternative C.


The mini-roundabout alternative (**Alternative B**) reduces vehicular conflict points but requires the greatest degree of reconstruction to Greene Road, introduces increased constructability and long-term maintenance considerations, and results in greater environmental impacts. Therefore, Alternative B is not recommended.

Appendix A Base Map Exhibits


GREENE ROAD TYPICAL SECTION

(LOOKING NORTH) (NOT TO SCALE)

KIMBERWICK LANE TYPICAL SECTION

(LOOKING EAST) (NOT TO SCALE)

FOREST PRESERVE ENTRANCE TYPICAL SECTION

(LOOKING EAST) (NOT TO SCALE)

USER NAME = raorora	DESIGNED - RA	REVISED -
DRAWN - MM	REVISED -	
CHECKED - MP	REVISED -	
PLOT DATE = 12/11/2025	DATE - 12/15/2025	REVISED -

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

**EXHIBIT A1 - EXISTING
TYPICAL SECTIONS**

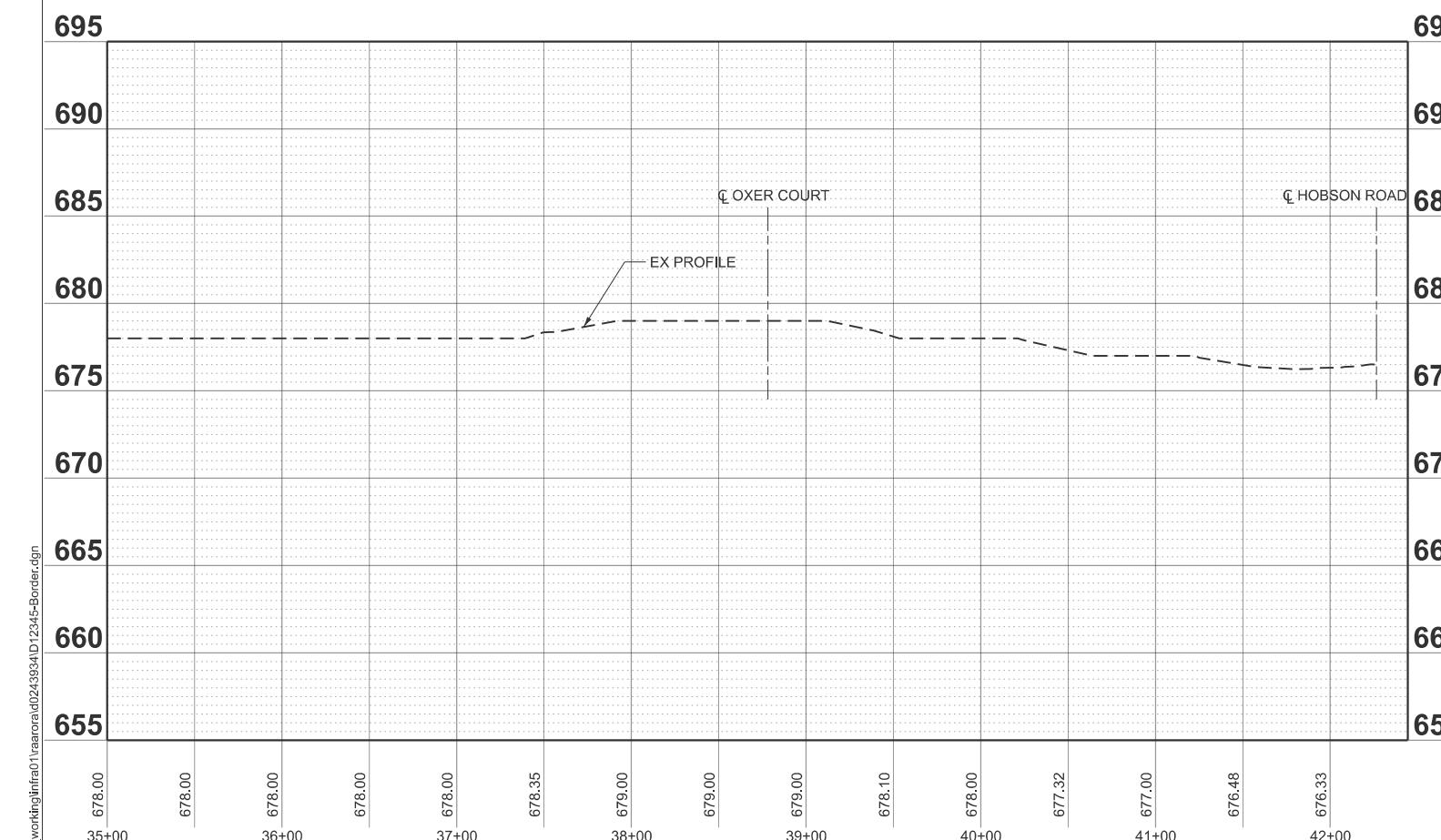
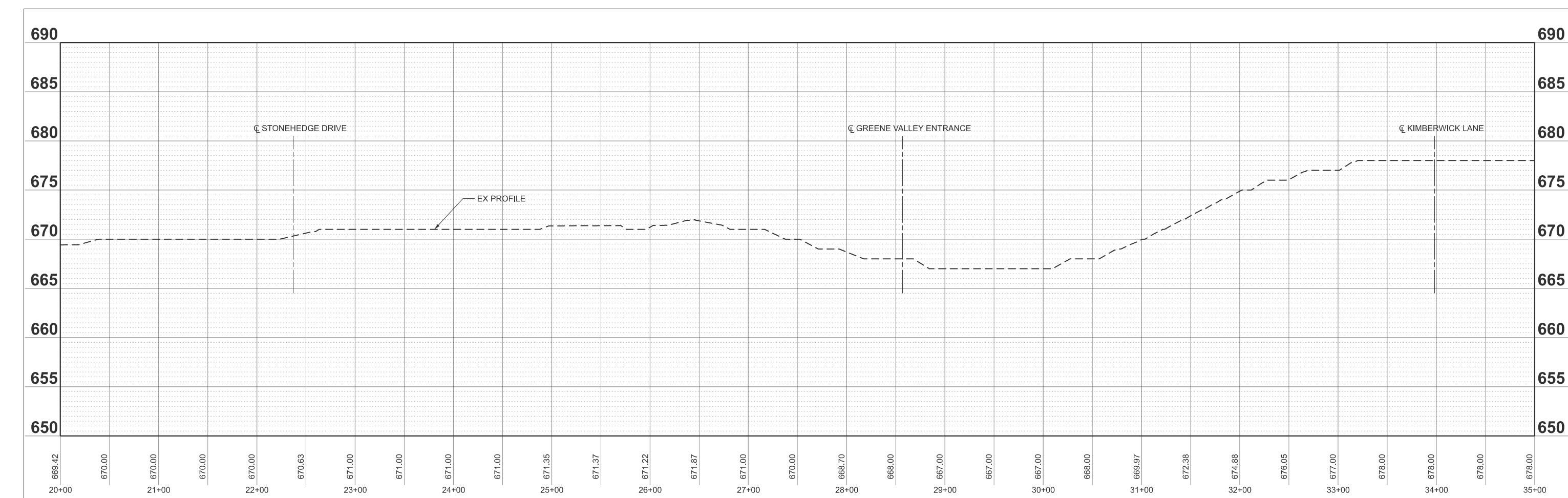
SCALE: NOT TO SCALE SHEET 1 OF 1 SHEETS STA. XX TO STA. XX

F.A. RTE.	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
XX	XX	DUPAGE	5	1

ILLINOIS FED. AID PROJECT

MODEL: Default

 Stantec



USER NAME =	raarora	DESIGNED -	RA
		DRAWN -	MM
		CHECKED -	MP
PLOT DATE =	12/11/2025	DATE -	12/15/2025

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

EXHIBIT A2 - GREENE VALLEY FOREST PRESERVE SITE OVERVIEW

EXHIBIT A2 - GREENE VALLEY FOREST PRESERVE SITE OVERVIEW						F.A. RTE.	SECTION		COUNTY	TOTAL SHEETS	HEET NO.
SCALE: 1" = 50'	SHEET 1	OF 2	SHEETS	STA. 21+00	TO STA. 36+50	XX	XX		DUPAGE	5	2
						CONTRACT NO. XX					
								ILLINOIS	FED. AID PROJECT		

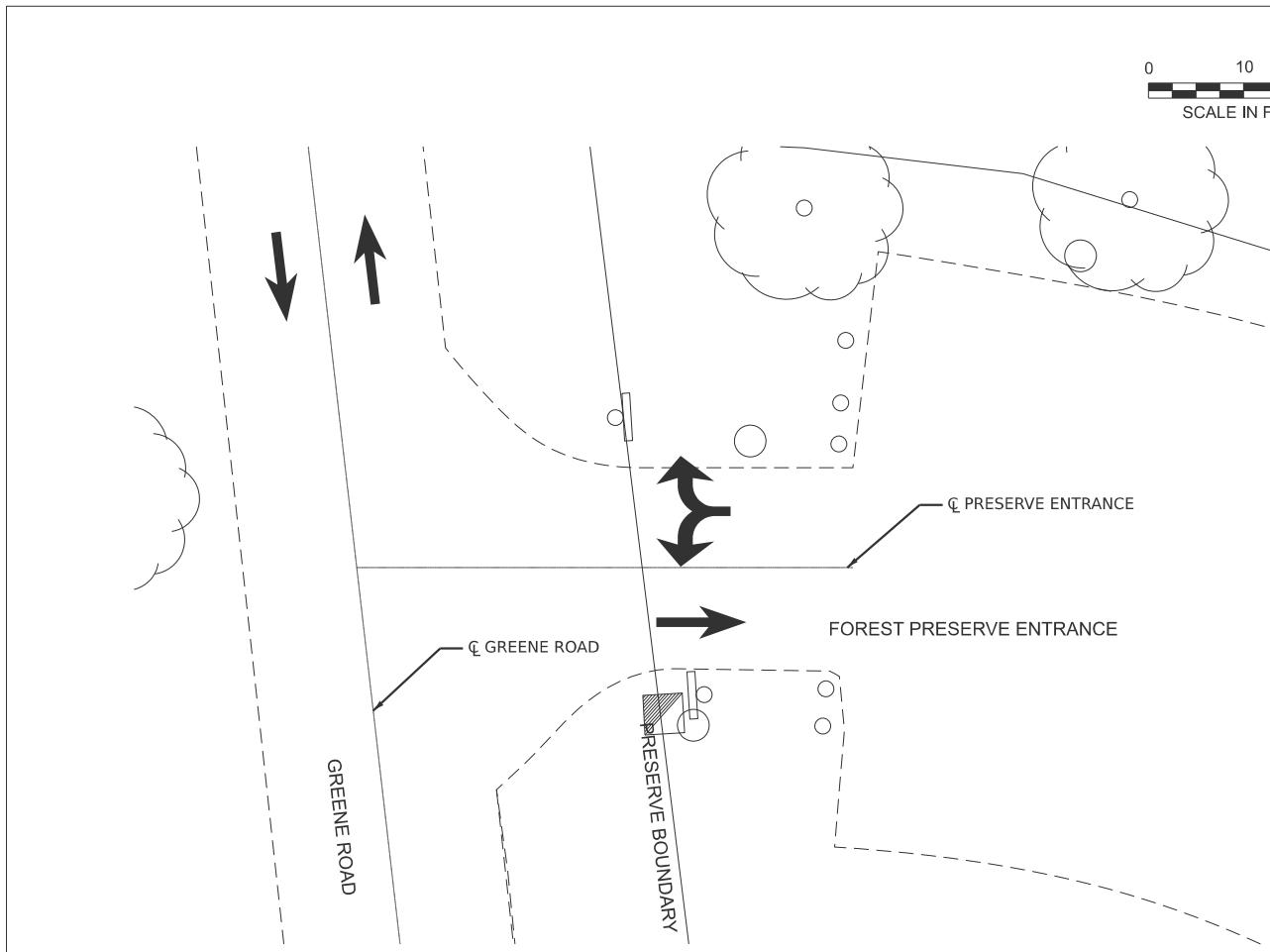
MODEL: Default
FILE NAME: c:\dw\working\draft\1\aaoroad2439341D12345-Border.dgn

USER NAME = raarora	DESIGNED - RA	REVISED -	
DRAWN - MM	REVISED -		
CHECKED - MP	REVISED -		

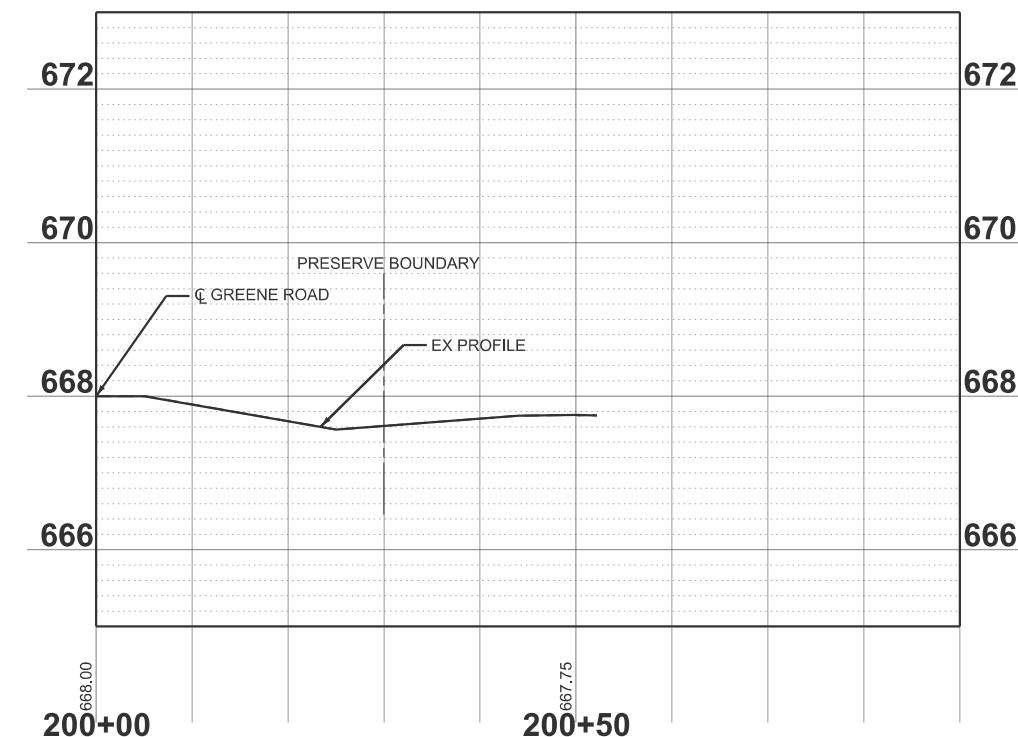
PLOT DATE = 12/11/2025 DATE - 12/15/2025 REVISED -

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

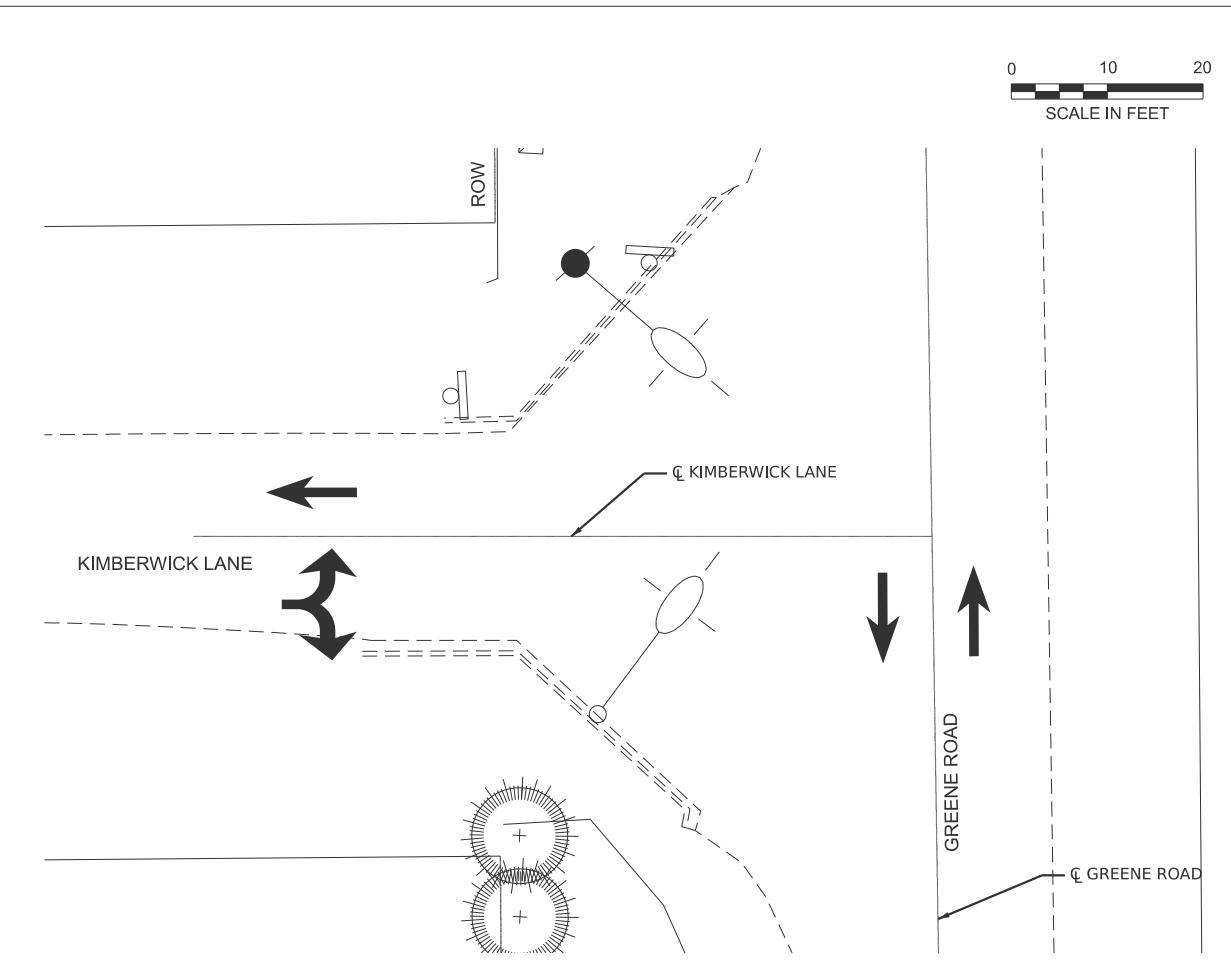
**EXHIBIT A4 - EXISTING GREENE
ROAD PROFILE**

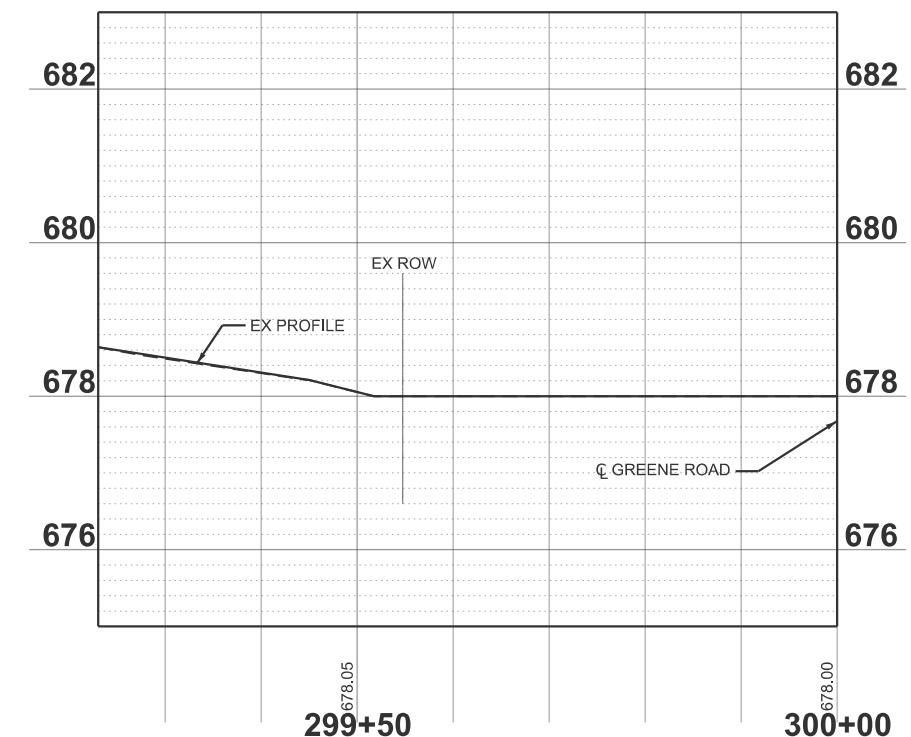

SCALE: 1"=50' SHEET 1 OF 1 SHEETS STA. 20+00.00 TO STA. 42+50.00

F.A. RTE. XX	SECTION XX	COUNTY DUPAGE	TOTAL SHEETS 5	SHEET NO. 4
			CONTRACT NO. XX	


ILLINOIS FED.AID PROJECT

A5


NOTE:
1. EXISTING PROFILES HAVE BEEN CREATED USING THE 1 FEET LIDAR DATA OF DUPAGE COUNTY.


PLAN : EXISTING GREENE VALLEY ENTRANCE

PROFILE : EXISTING GREENE VALLEY ENTRANCE

PLAN : EXISTING KIMBERWICK LANE

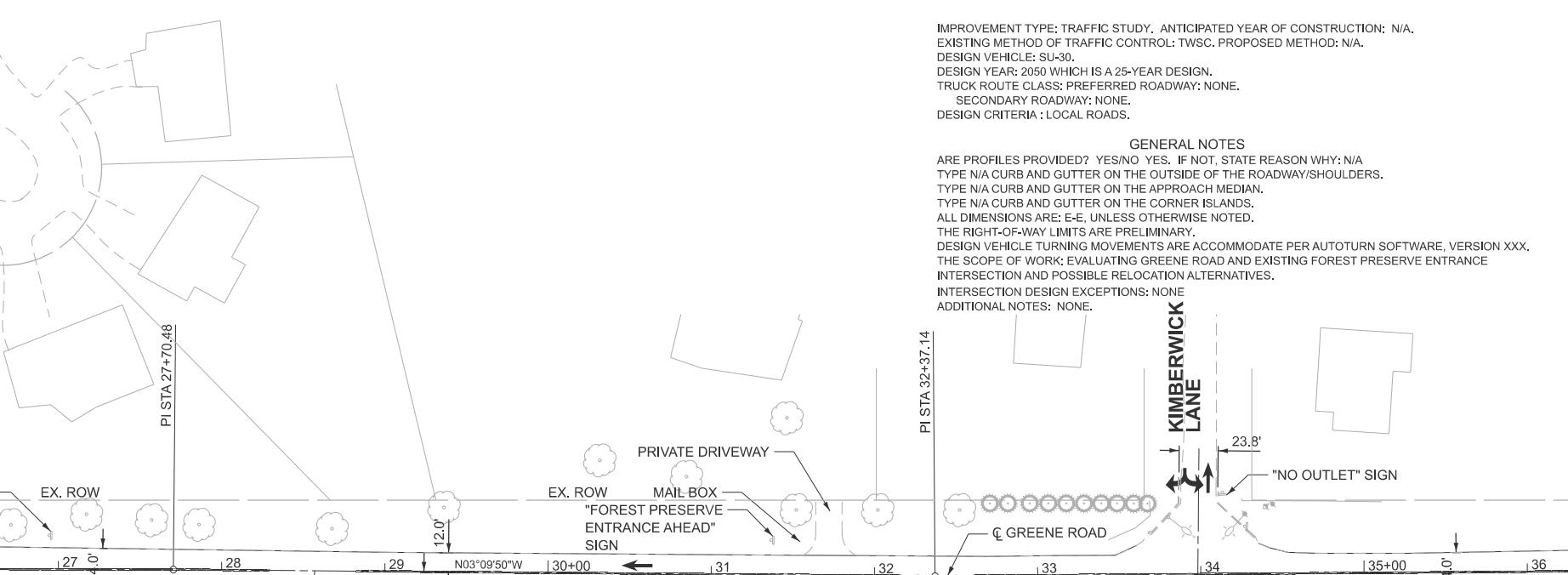
PROFILE : EXISTING KIMBERWICK LANE

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

EXHIBIT A5 - EXISTING GREENE VALLEY ENTRANCE
AND KIMBERWICK LANE PLAN AND PROFILE

F.A. RTE. XX	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
XX	XX	DUPAGE	5	5

NOTE:
1. EXISTING PROFILES HAVE BEEN CREATED USING THE 1 FEET LIDAR DATA OF DUPAGE COUNTY.



Appendix B Existing Intersection IDS

TWO-WAY STOP-CONTROLLED CAPACITY DESIGN ANALYSIS

PROGRAM USED: HCS 2026, VERSION: 8.5 PEAK HOUR FACTOR: 0.95
 SIGNALIZED INTERSECTION(S) WITHIN 0.25 MILES OF INTERSECTION ALONG MAJOR ROUTE? YES
 FLARED APPROACH FOR MINOR STREET RIGHT-TURNING VEHICLE? (YES/NO): YES ON THE EAST APPROACH, N/A ON THE WEST APPROACH.
 SINGLE OR TWO-STAGE GAP ACCEPTANCE? SINGLE

APPROACH	EASTBOUND			WESTBOUND			NORTHBOUND			SOUTHBOUND		
	MINOR			MINOR			MAJOR			MAJOR		
MAJOR OR MINOR LEG?	L	T	R	L	T	R	L	T	R	L	T	R
NUMBER OF LANES				0	1	0	1	0	0	0	1	
2050 30TH MAX. HOUR TRAFFIC (V) (veh/h)	A.M.			15		15	230	15	15	230		
PEDESTRIANS/HOUR (ped/h) COUNT OR ESTIMATE?	P.M.			20		20	255	20	20	255		
CAPACITY $C_{p,x}$ OR $C_{p,R}$ (veh/h)	A.M.			621				1319				
V/C RATIO $(V/C)_{p,x}$	P.M.			578				1284				
STORAGE QUEUE (NO. OF VEHICLES)	A.M.			0.05				0.01				
P.M.				0.07				0.02				
CONTROL DELAY (SECONDS)	A.M.			0.2				0.0				
P.M.				0.2				0.0				
LANE GROUP LEVEL OF SERVICE	A.M.			11.1				7.8	0.1			
P.M.				11.7				7.9	0.2			
APPROACH DELAY, d (SEC)	A.M.			B				A	A			
P.M.				B				A	A			
APPROACH LEVEL OF SERVICE	A.M.			11.1				0.5				
P.M.				11.7				0.5				

PLOT DATE = 12/17/2025 FILE NAME = pwsame-scw-bentley.com\stans\scw-pw02\Documents\17368200\CADdata\CADSheets\12345-sht-idsZ-1.dgn
 FILE NAME = pwsame-scw-bentley.com\stans\scw-pw02\Documents\17368200\CADdata\CADSheets\12345-sht-idsZ-1.dgn
 USER NAME = mmansour
 PLOT SCALE = 1:2000

MOVEMENT	YEAR 2025 30TH MAXIMUM HOUR TRAFFIC		PERCENT TRUCK TRAFFIC IN 30TH MAX. HOUR		ESTIMATED PERCENT INCREASE BY	YEAR 2050 30TH MAXIMUM HOUR TRAFFIC		ESTIMATED PERCENT INCREASE BY	YEAR 2050 30TH MAXIMUM HOUR TRAFFIC	
	A.M.	P.M.	A.M.	P.M.		A.M.	P.M.		A.M.	P.M.
	12	13	0	0		15	20		15	20
AD (L)	12	13	0	0					230	255
AB (T)	190	209	6.6	7.2					230	255
AC (R)										
BC (L)										
BA (T)	230	255	6.6	7.2					230	255
BD (R)	12	13	0	0					15	20
CA (L)										
CD (T)										
CB (R)										
DB (L)	12	13	0	0					15	20
DC (T)										
DA (R)	12	13	0	0					15	20
TOTAL A	202	222							245	275
TOTAL B	202	222							245	275
TOTAL C										
TOTAL D	24	26							30	40

T = THROUGH, L = LEFT, R = RIGHT

ELEMENTS CONTROLLING DESIGN

PREFERRED ROUTE (NORTH-SOUTH LEG):

F.A. ROUTE NUMBER: N/A, MARKED ROUTE NUMBER: N/A.
 STREET NAME: GREENE ROAD, SRA ROUTE? NO.
 FUNCTIONAL CLASSIFICATION: MAJOR COLLECTOR, OSOW DESIGN? NO.
 EXISTING ADT: 3800 VPD, DESIGN YEAR ADT: 4600 VPD.
 PROPOSED DESIGN SPEED: 40 MPH. PROPOSED POSTED SPEED: 35 MPH.

SECONDARY ROUTE (EAST LEG):

F.A. ROUTE NUMBER: N/A, MARKED ROUTE NUMBER: N/A.
 STREET NAME: FOREST PRESERVE ENTRANCE, SRA ROUTE: NO.
 FUNCTIONAL CLASSIFICATION: LOCAL, OSOW DESIGN? NO.
 EXISTING ADT: 331 VPD, DESIGN YEAR ADT: 397 VPD.
 PROPOSED DESIGN SPEED: 20 MPH. PROPOSED POSTED SPEED: 20 MPH.

IMPROVEMENT TYPE: TRAFFIC STUDY, ANTICIPATED YEAR OF CONSTRUCTION: N/A.
 EXISTING METHOD OF TRAFFIC CONTROL: TWSC. PROPOSED METHOD: N/A.
 DESIGN VEHICLE: SU-30.
 DESIGN YEAR: 2050 WHICH IS A 25-YEAR DESIGN.
 TRUCK ROUTE CLASS: PREFERRED ROADWAY: NONE.
 SECONDARY ROADWAY: NONE.
 DESIGN CRITERIA: LOCAL ROADS.

GENERAL NOTES

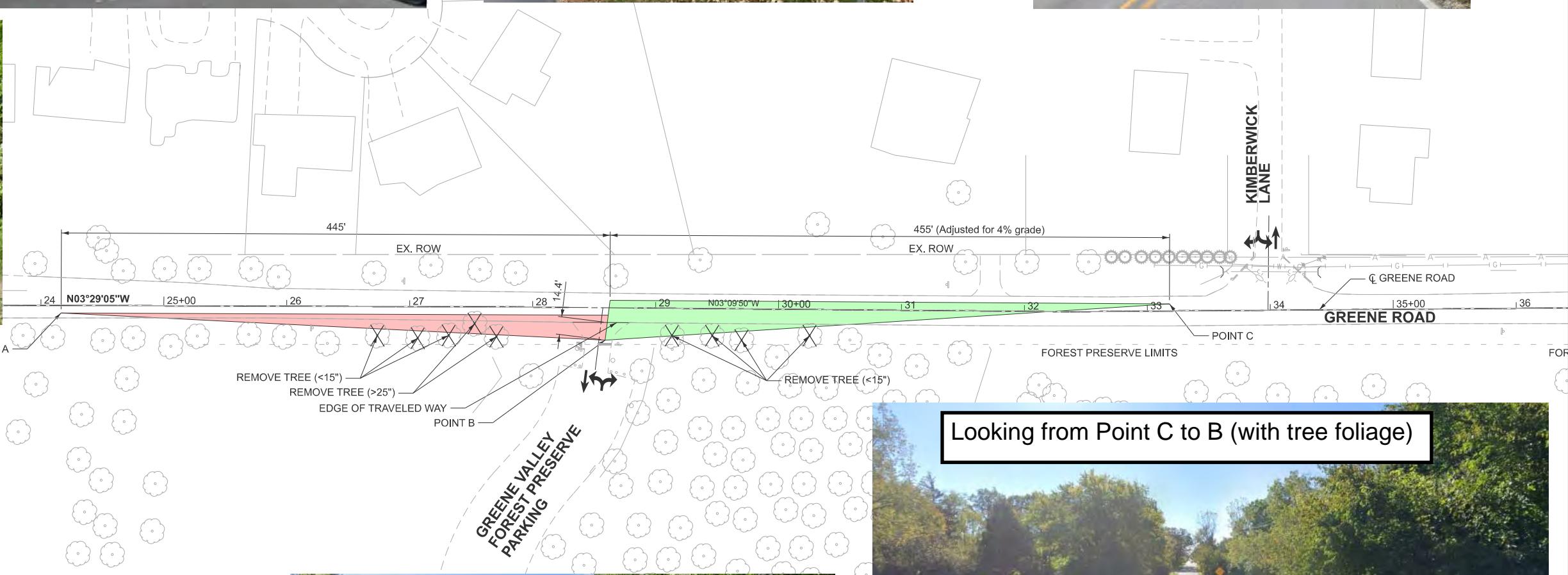
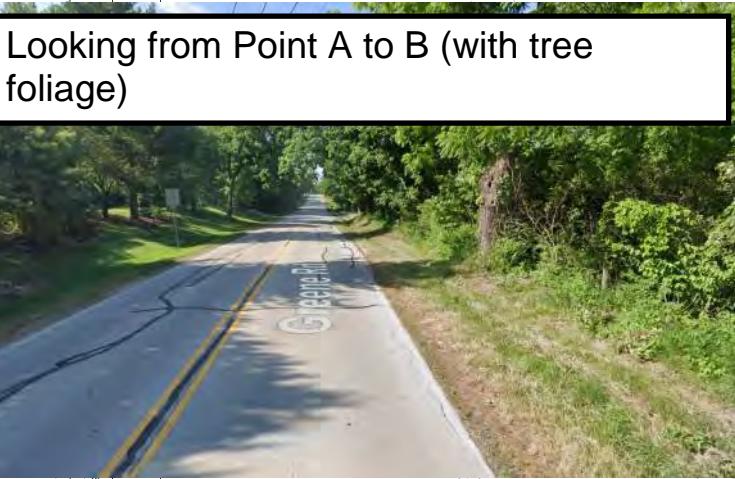
ARE PROFILES PROVIDED? YES/NO YES. IF NOT, STATE REASON WHY: N/A.
 TYPE N/A CURB AND GUTTER ON THE OUTSIDE OF THE ROADWAY/SHOULDERS.
 TYPE N/A CURB AND GUTTER ON THE APPROACH MEDIAN.
 TYPE N/A CURB AND GUTTER ON THE CORNER ISLANDS.
 ALL DIMENSIONS ARE: E-E, UNLESS OTHERWISE NOTED.
 THE RIGHT-OF-WAY LIMITS ARE PRELIMINARY.
 DESIGN VEHICLE TURNING MOVEMENTS ARE ACCOMMODATE PER AUTOTURN SOFTWARE, VERSION XXX.
 THE SCOPE OF WORK EVALUATING GREENE ROAD AND EXISTING FOREST PRESERVE ENTRANCE
 INTERSECTION AND POSSIBLE RELOCATION ALTERNATIVES.
 INTERSECTION DESIGN EXCEPTIONS: NONE
 ADDITIONAL NOTES: NONE.

FOR

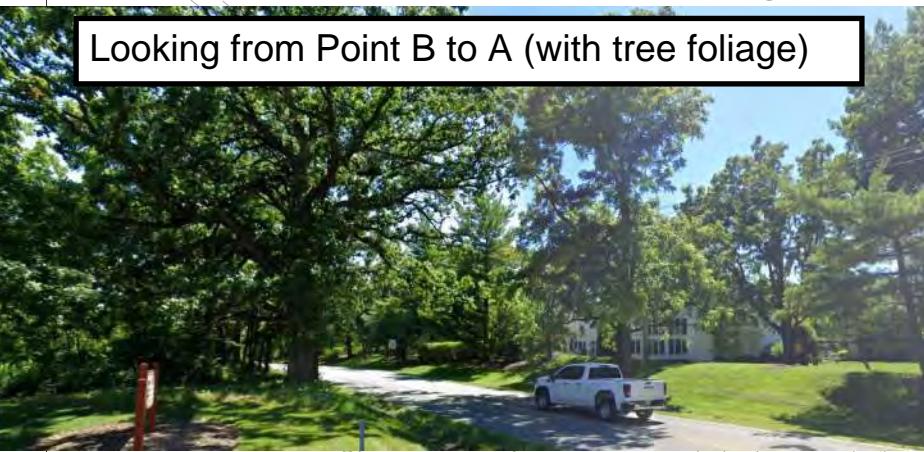
FO

Looking from Point A to B

Looking from Point B to A

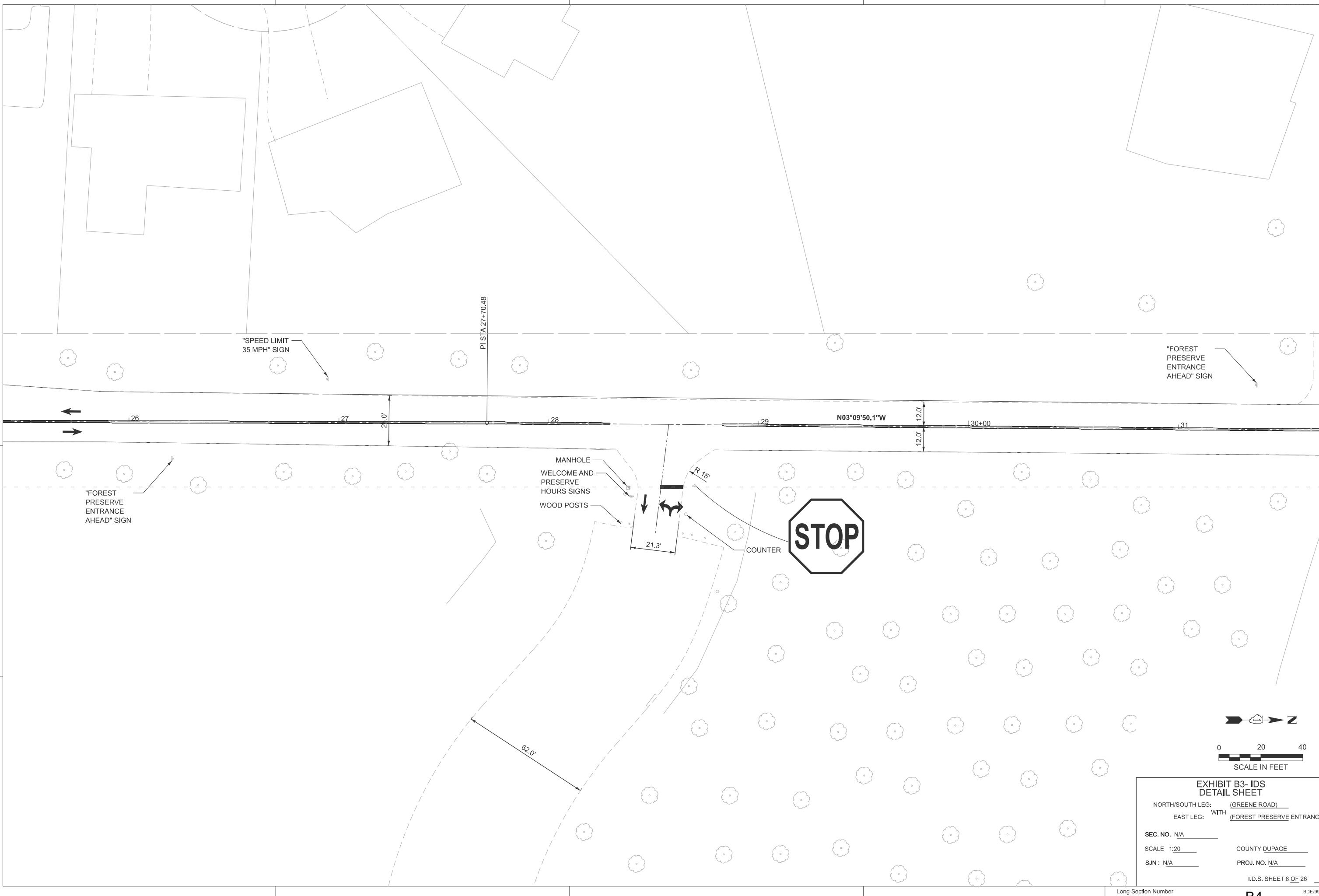


Looking from Point B to C

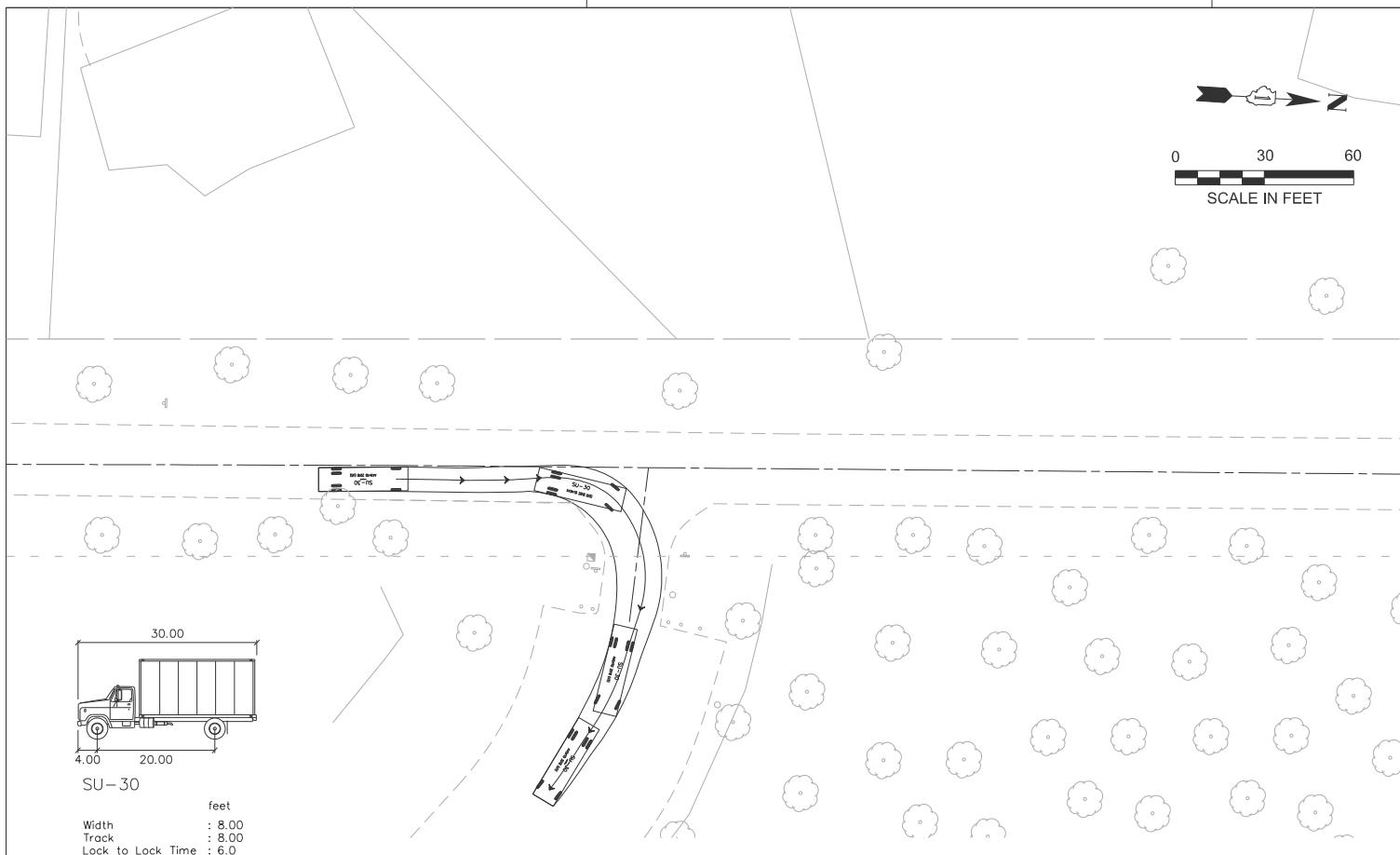
Looking from Point C to B


Looking from Point A to B (with tree foliage)

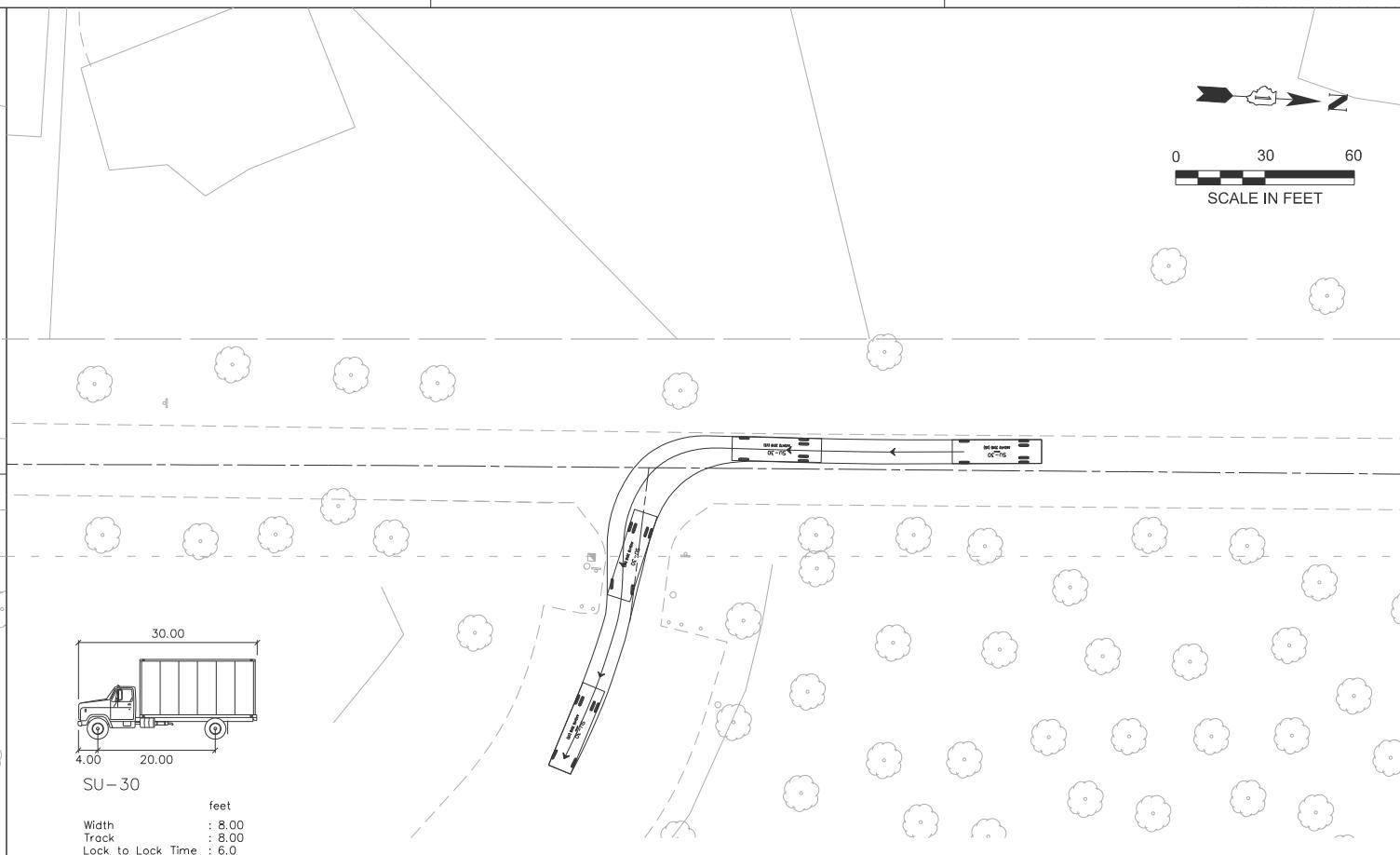
Looking from Point C to B (with tree foliage)

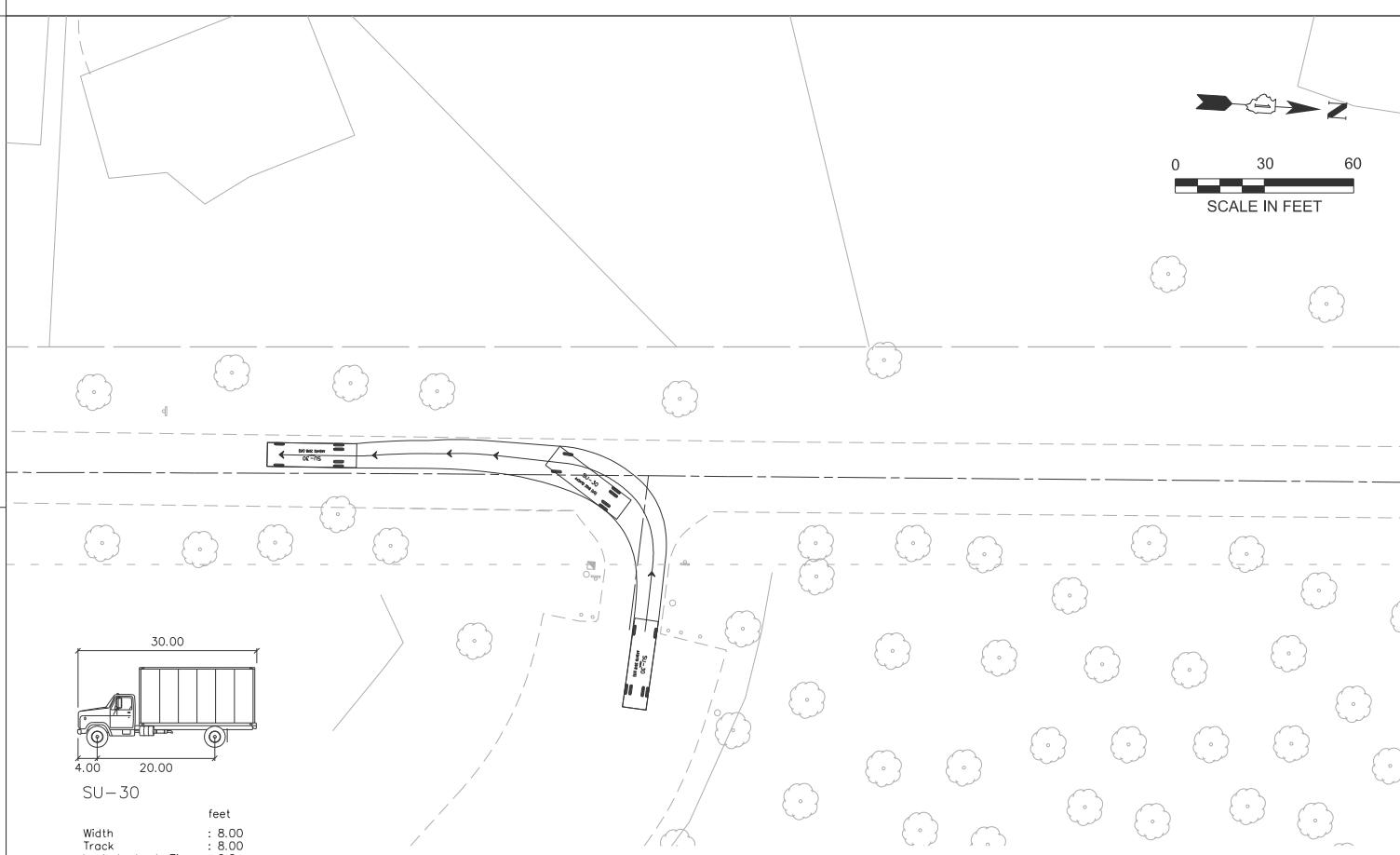
Looking from Point B to A (with tree foliage)

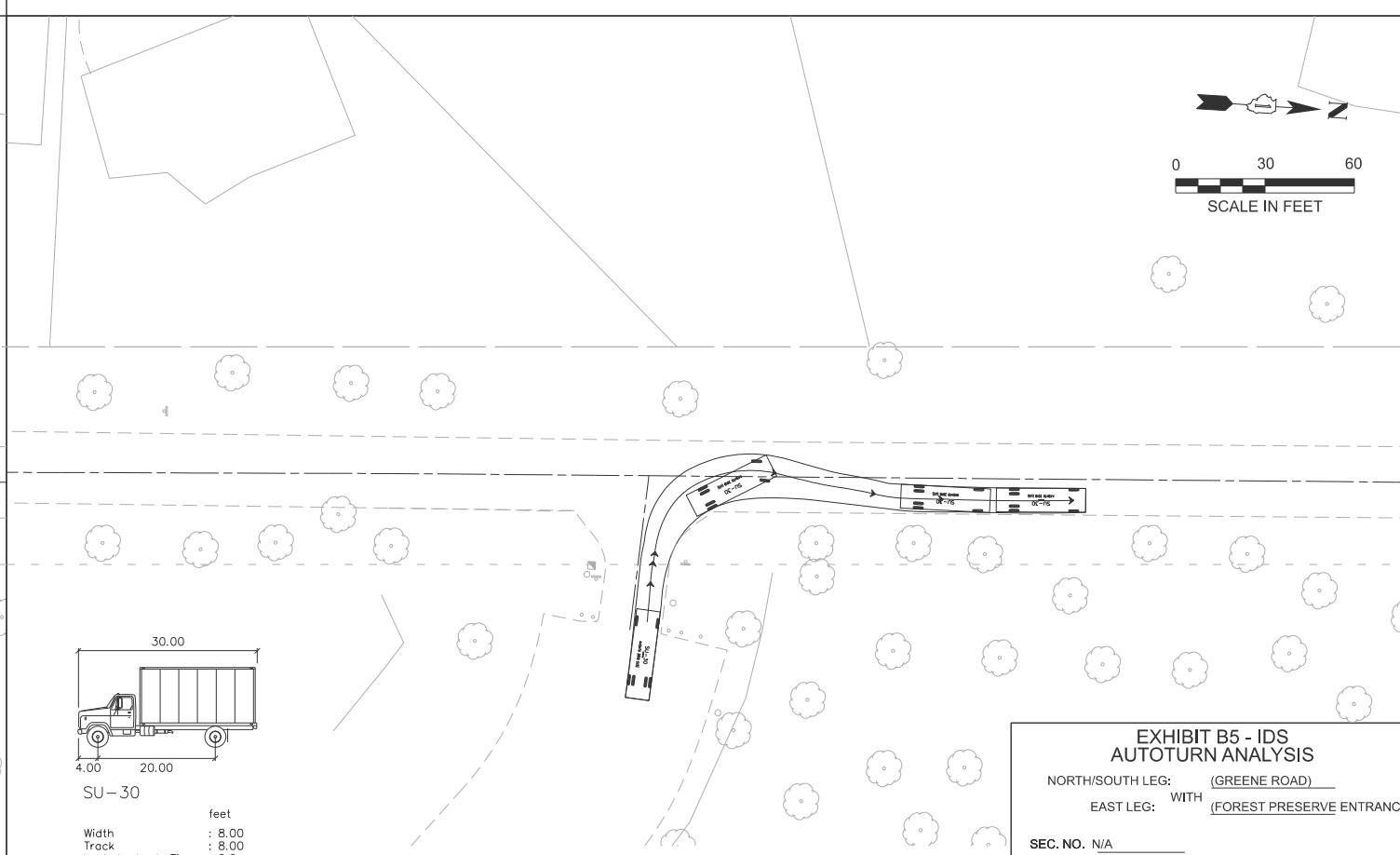

Looking from Point B to C (with tree foliage)


LEGEND

■ LEFT SIGHT TRIANGLE
■ RIGHT SIGHT TRIANGLE


EXHIBIT B2 - IDS
STOPPING SIGHT DISTANCE ANALYSIS
NORTH/SOUTH LEG: (GREENE ROAD)
EAST LEG: WITH (FOREST PRESERVE ENTRANCE)
SEC. NO. NA
SCALE 1:50
S.J.N. NA
COUNTY DUPAGE
PROJ. NO. NA
I.D.S. SHEET 7 OF 26




NORTHBOUND GREENE RD TRAFFIC TURNING RIGHT TO FOREST PRESERVE

SOUTHBOUND GREENE RD TRAFFIC TURNING LEFT TO FOREST PRESERVE

WESTBOUND FOREST PRESERVE TRAFFIC TURNING LEFT TO GREENE RD

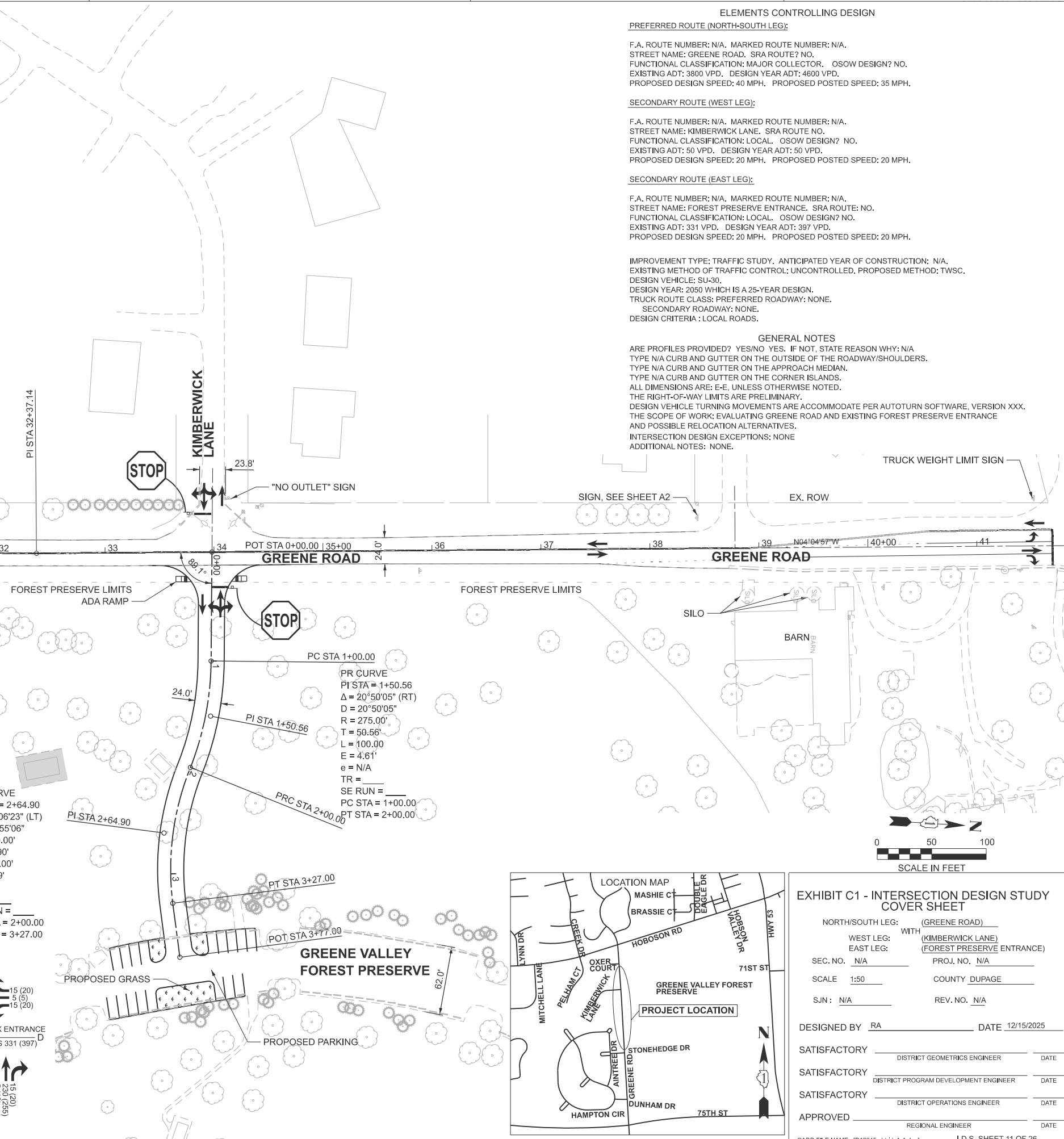

WESTBOUND FOREST PRESERVE TRAFFIC TURNING RIGHT TO GREENE RD

EXHIBIT B5 - IDS AUTOTURN ANALYSIS
NORTH/SOUTH LEG: (GREENE ROAD)
EAST LEG: WITH (FOREST PRESERVE ENTRANCE)
SEC. NO. N/A
SCALE 1:30
S/N: N/A
COUNTY DUPAGE
PROJ. NO. N/A
I.D.S. SHEET 10 OF 26

Appendix C Alternative A IDS

TWO-WAY STOP-CONTROLLED CAPACITY DESIGN ANALYSIS													
PROGRAM USED: HCS 2026 VERSION: 8.5 PEAK HOUR FACTOR: 0.95													
SIGNALIZED INTERSECTION(S) WITHIN 0.25 MILES OF INTERSECTION ALONG MAJOR ROUTE? YES													
FLARED APPROACH FOR MINOR STREET RIGHT-TURNING VEHICLE? (YES/NO): YES ON THE EAST APPROACH, YES ON THE WEST APPROACH.													
SINGLE OR TWO-STAGE GAP ACCEPTANCE? SINGLE													
APPROACH		EASTBOUND			WESTBOUND			NORTHBOUND			SOUTHBOUND		
MAJOR OR MINOR LEG?		MINOR			MINOR			MAJOR			MAJOR		
LANE GROUP		L	T	R	L	T	R	L	T	R	L	T	R
NUMBER OF LANES		0	1	0	0	1	0	0	1	0	0	1	0
2050 30TH MAX. HOUR TRAFFIC (V) (veh/h)	A.M.	5	5	5	15	5	15	5	230	15	15	230	5
	P.M.	5	5	5	20	5	20	10	255	20	20	255	10
PEDESTRIANS/HOUR (ped/h) COUNT OR ESTIMATE?	A.M.	0	0	0	0	0	0	0	0	0	0	0	0
	P.M.	0	0	0	0	0	0	0	0	0	0	0	0
CAPACITY $c_{p,x}$ OR $c_{d,x}$ (veh/h)	A.M.	512			543			1330			1319		
	P.M.		458			494			1295			1284	
v/c RATIO (v/c p_x)	A.M.	0.03			0.07			0.00			0.01		
	P.M.	0.03			0.10			0.01			0.02		
STORAGE QUEUE (NO. OF VEHICLES)	A.M.	0.1			0.2			0.0			0.0		
	P.M.	0.1			0.3			0.0			0.0		
CONTROL DELAY (SECONDS)	A.M.	12.3			12.1			7.7	0.0	0.0	7.8	0.1	0.1
	P.M.	13.1			13.1			7.8	0.1	0.1	7.9	0.2	0.2
LANE GROUP LEVEL OF SERVICE	A.M.	B			B			A	A	A	A	A	A
	P.M.	B			B			A	A	A	A	A	A
APPROACH DELAY, d (SEC)	A.M.	12.3			12.1			0.2			0.6		
	P.M.	13.1			13.1			0.3			0.7		
APPROACH LEVEL OF SERVICE	A.M.	B			B			A			A		
	P.M.	B			B			A			A		

DATE = 12/17/2025
E NAME = pw@stantec-sc-pw.bentley.com:stantec-sc-pw-02/Documents/173609200/CADDdata/CADsheets/D12345-sh1idsA1.dgn

**EXHIBIT C1 - INTERSECTION DESIGN STUDY
COVER SHEET**

NORTH/SOUTH LEG: (GREENE ROAD)

WEST LEG: WITH (KIMBERWICK LANE)

EAST LEG: (FOREST PRESERVE ENTRANCE)

ALE 1:50 COUNTY DUPAGE

— **ETIQUETTE** — **1000** —

N: N/A REV. NO. N/A

SIGNED BY RA DATE 12/15/2025

FACTORY

DISTRICT GEOMETRICS ENGINEER

DISTRICT PROGRAM DEVELOPMENT ENGINEER DATE

SFACTORY _____ **DISTRICT OPERATIONS ENGINEER** _____ **DATE**

ROVED _____

E NAME : [D12345-sht-idsA-1.dgn] I.D.S. SHEET 11 OF 26

Section Number **C3** BDE-4

62 County Names

Greene Road and Kimberwick Lane intersection, (Looking East)

Trees on east side of Greene Road at proposed entrance

0 50 100
SCALE IN FEET

PLOT DATE = 12/17/2025
FILE NAME = pwsamec-cpw02/constantine-cpw02/Documents/17368200/CA/0Data/CA/Sheets/12345-shd145.dgn
PLOT SCALE = 1:5000
USER NAME = mmansour

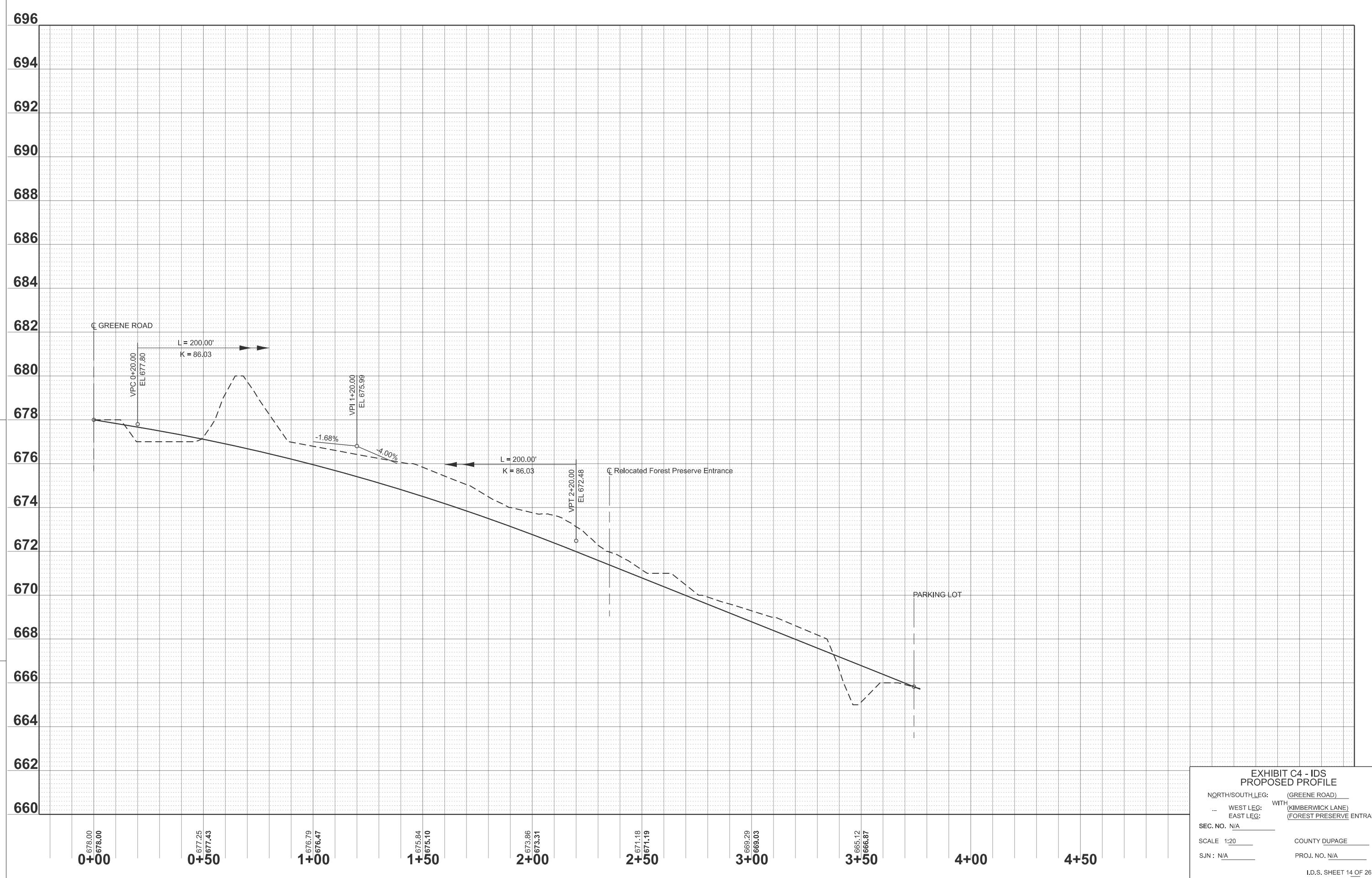
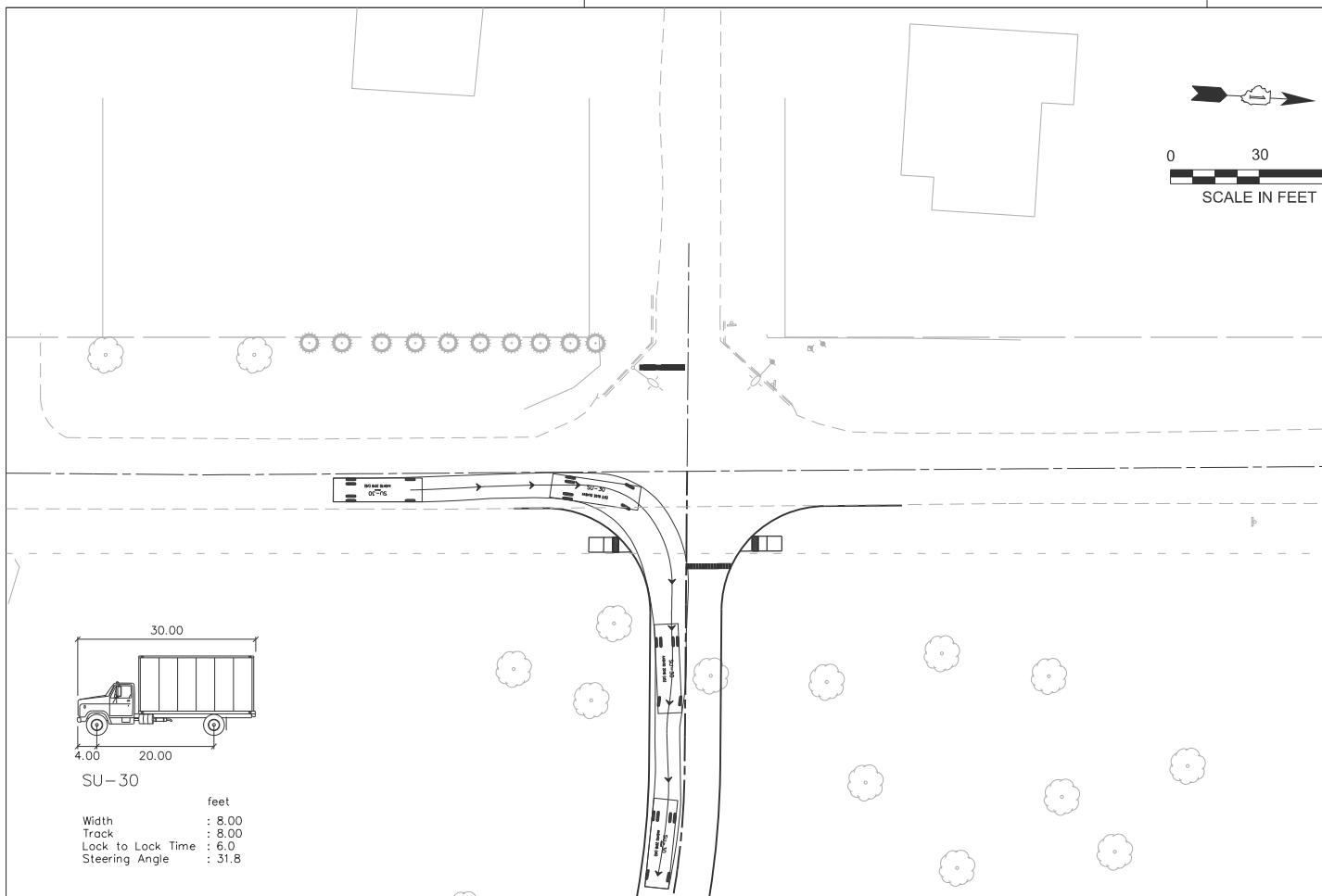
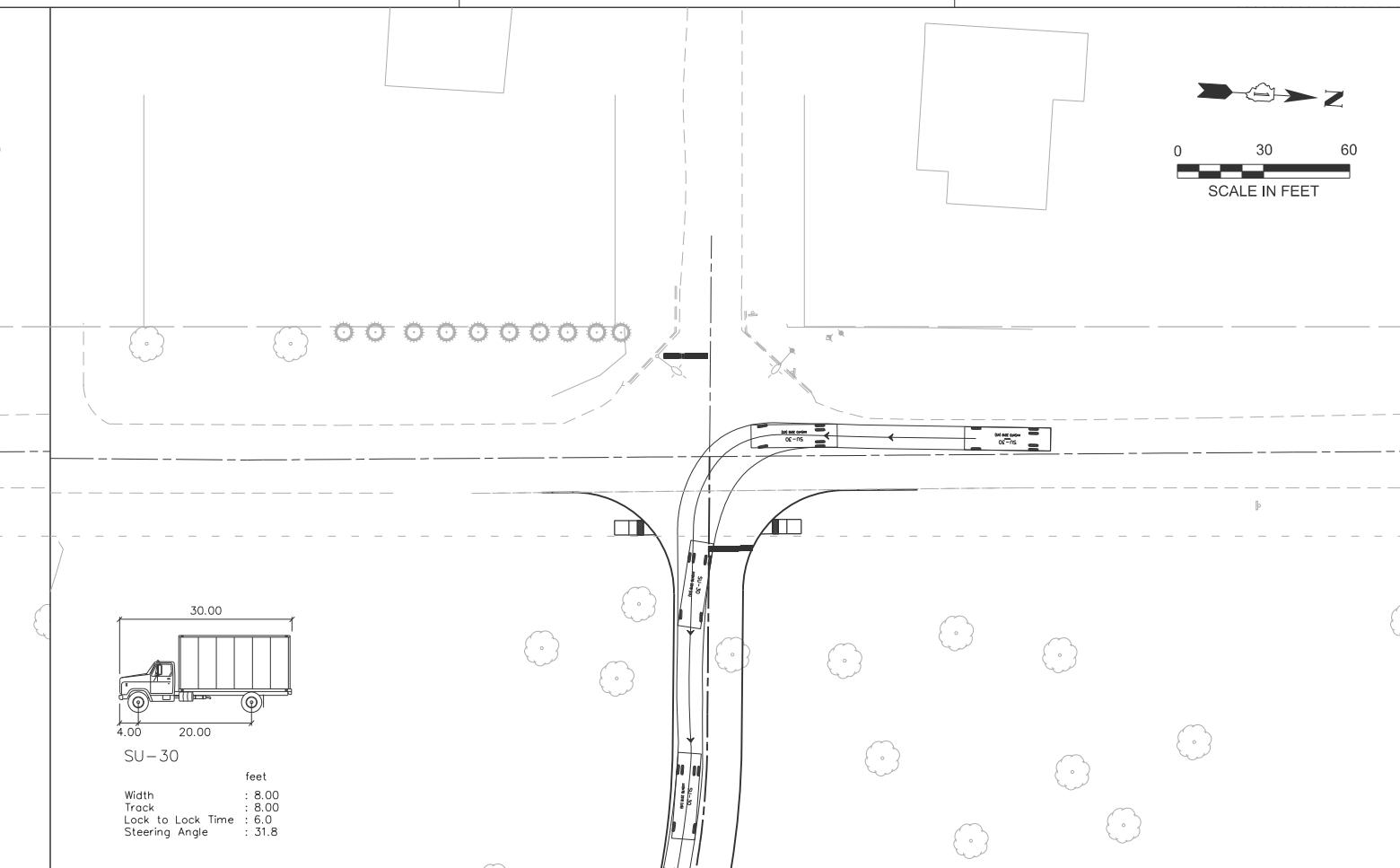
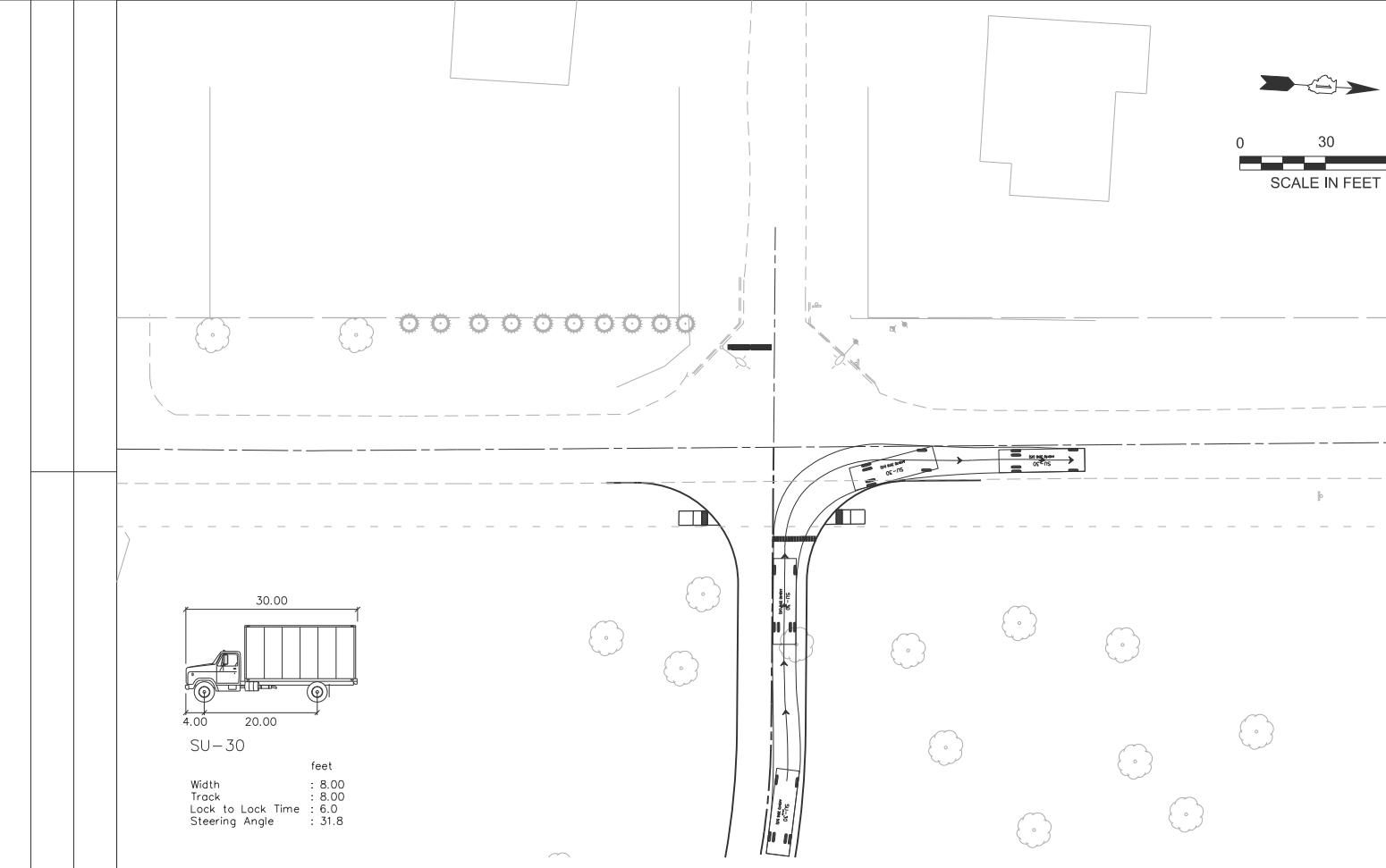
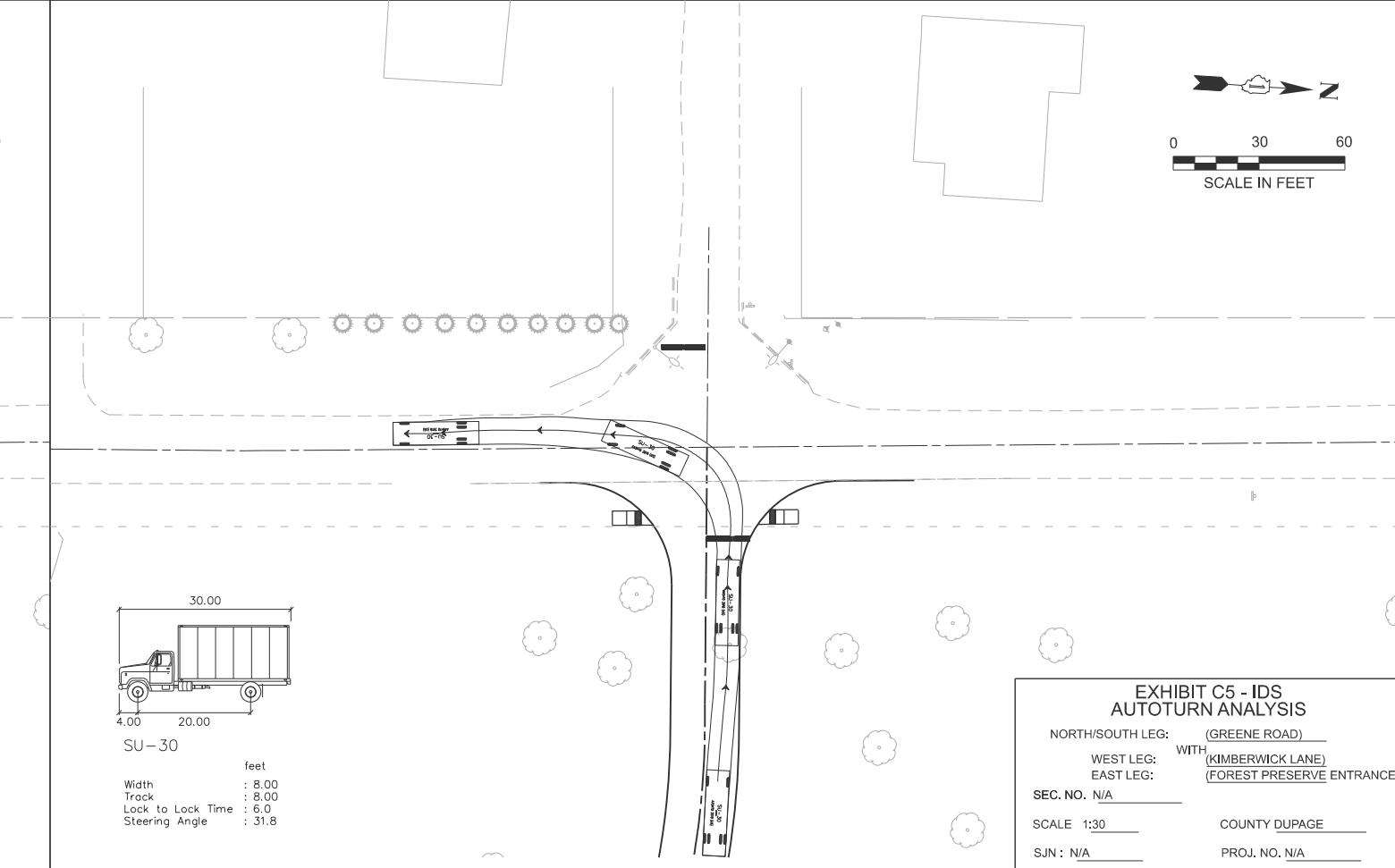
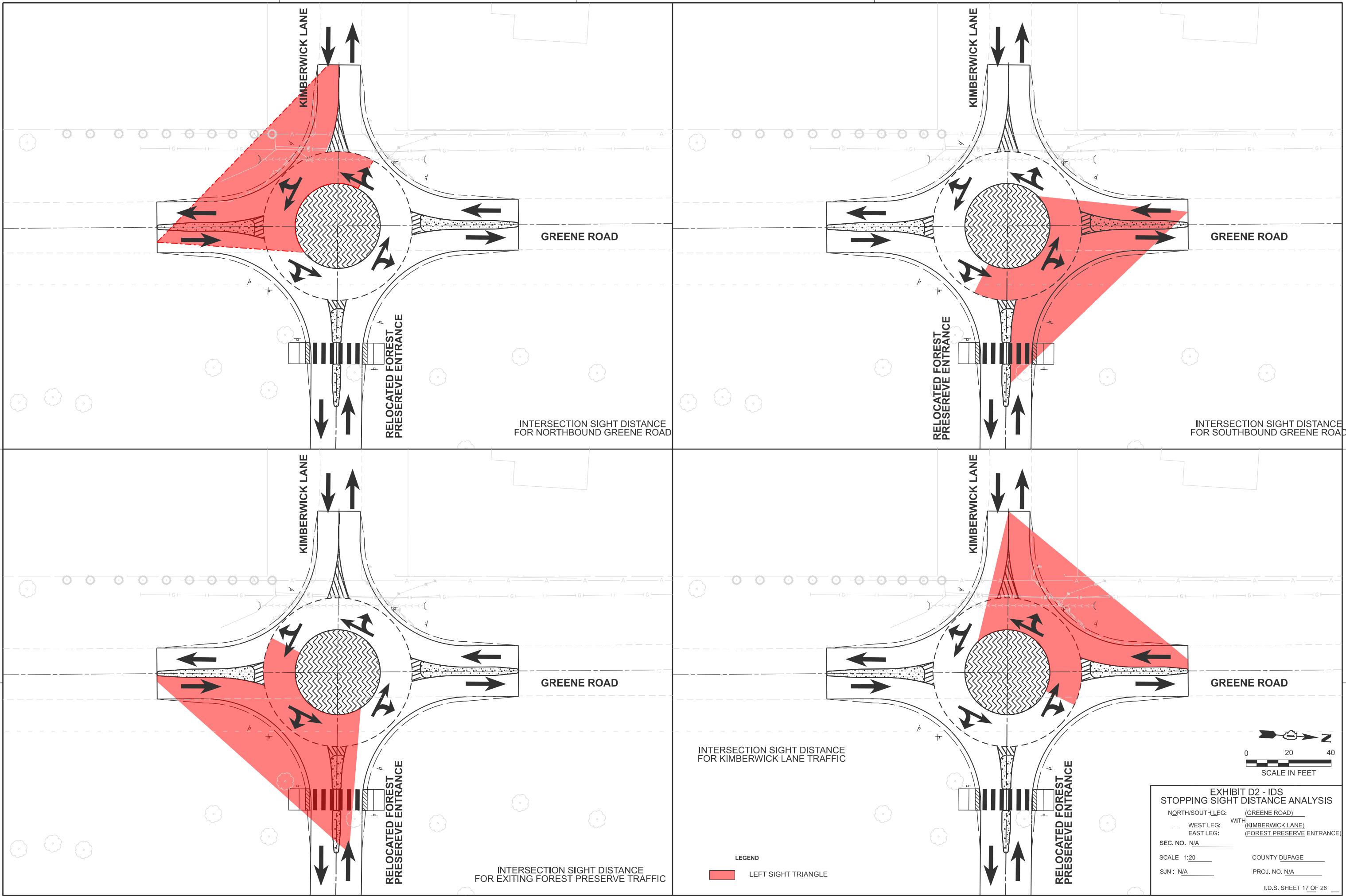




EXHIBIT C4 - IDS
PROPOSED PROFILE


NORTH/SOUTH LEG: (GREENE ROAD)
-- WEST LEG: WITH (KIMBERWICK LANE)
EAST LEG: (FOREST PRESERVE ENTRANCE)
SEC. NO. N/A
SCALE 1:20
COUNTY DUPAGE
SJN: N/A
PROJ. NO. N/A
I.D.S. SHEET 14 OF 26

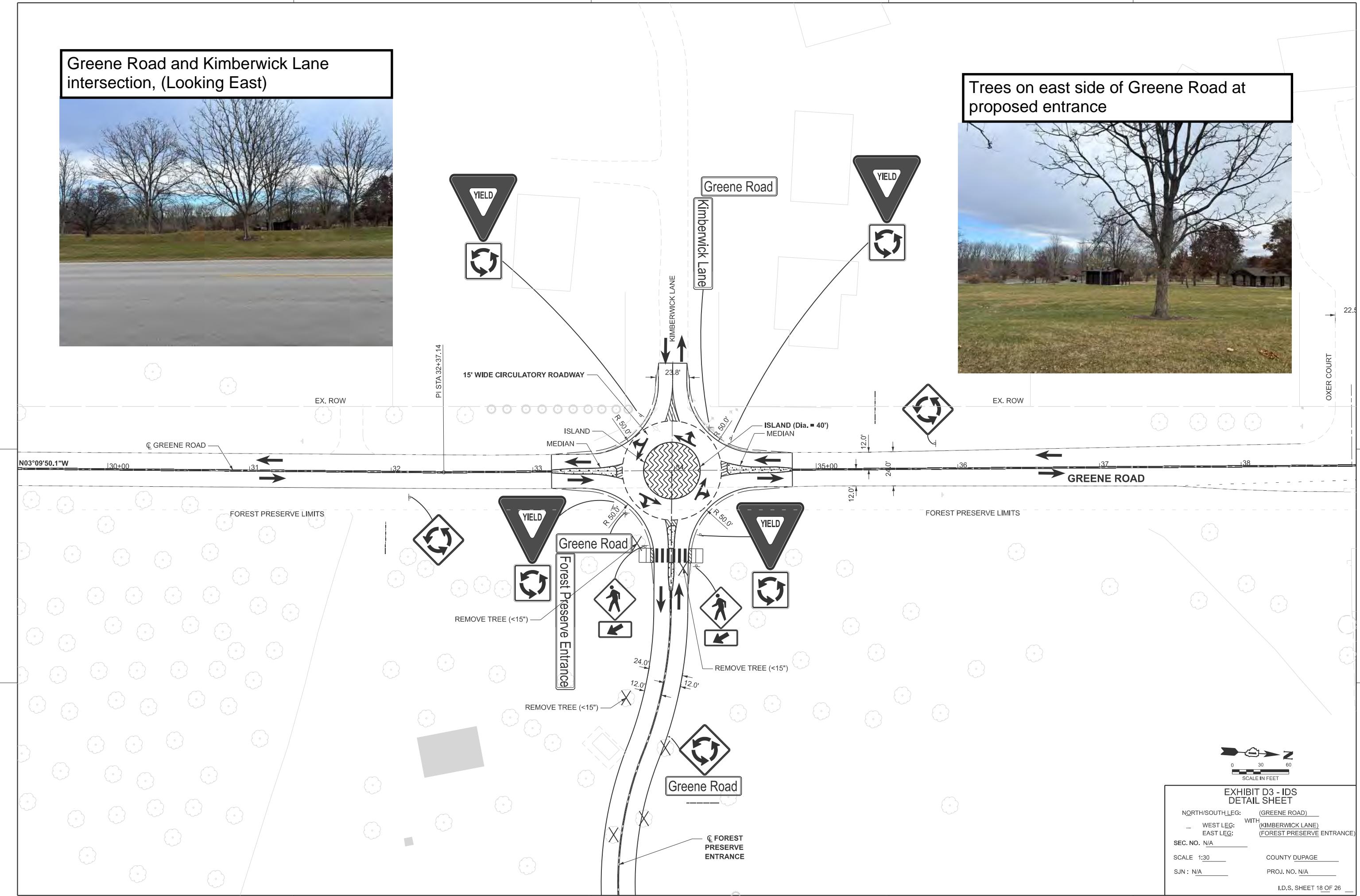

NORTHBOUND GREENE RD TRAFFIC TURNING RIGHT TO FOREST PRESERVE

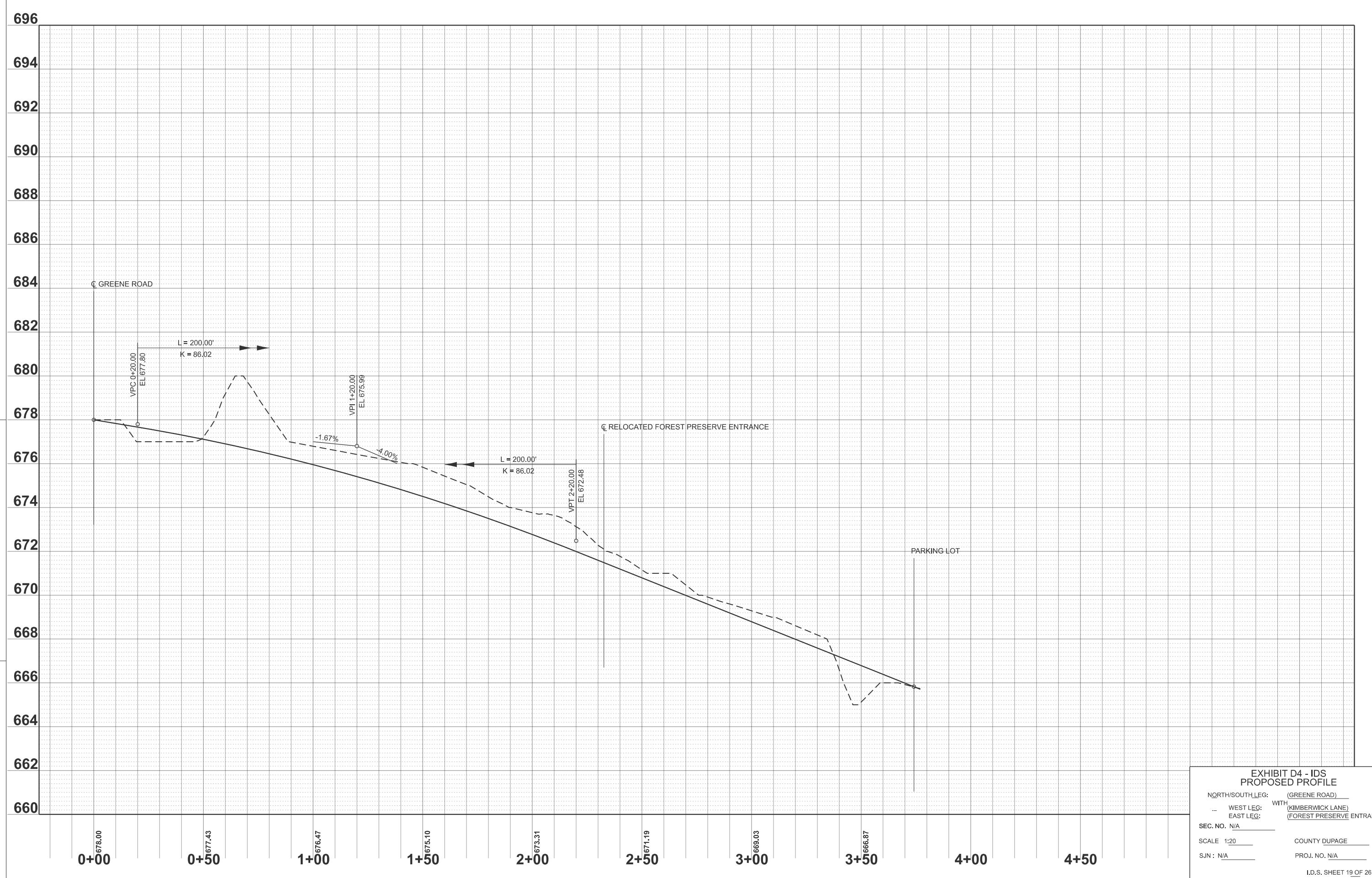
SOUTHBOUND GREENE RD TRAFFIC TURNING LEFT TO FOREST PRESERVE

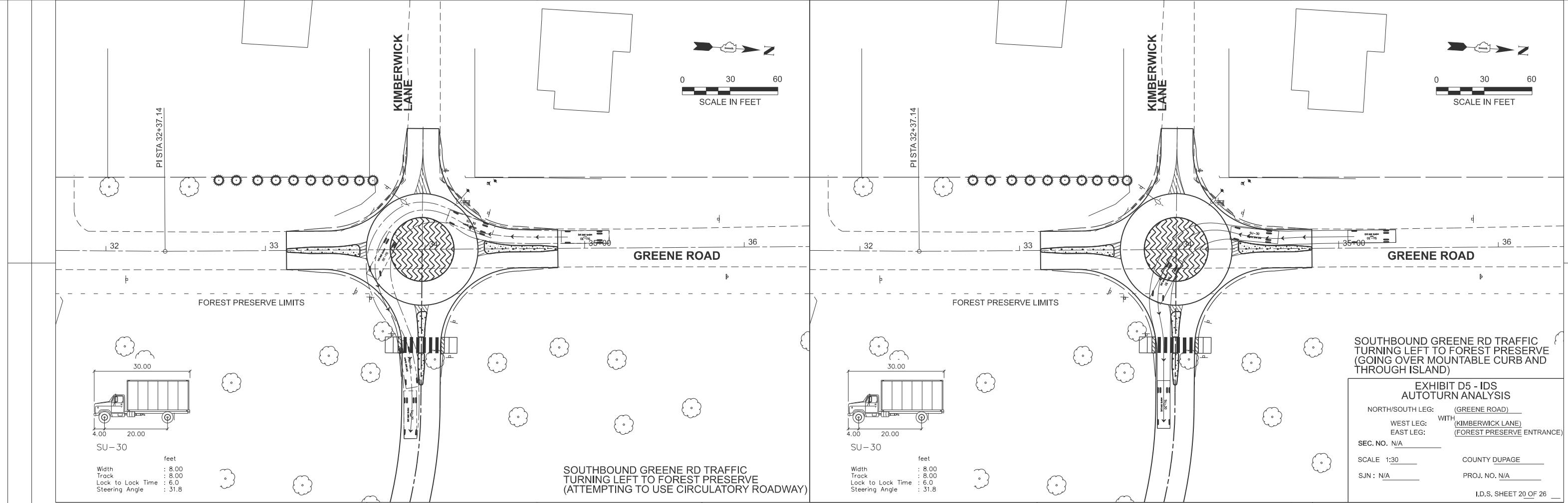
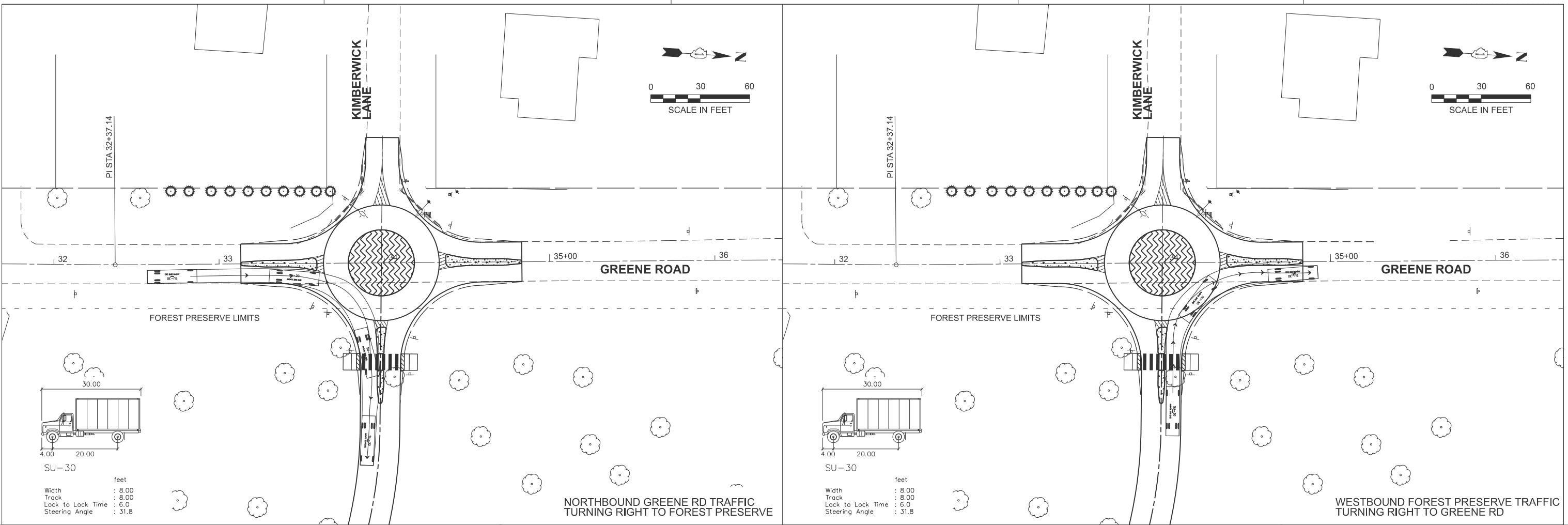

WESTBOUND FOREST PRESERVE TRAFFIC TURNING LEFT TO GREENE RD

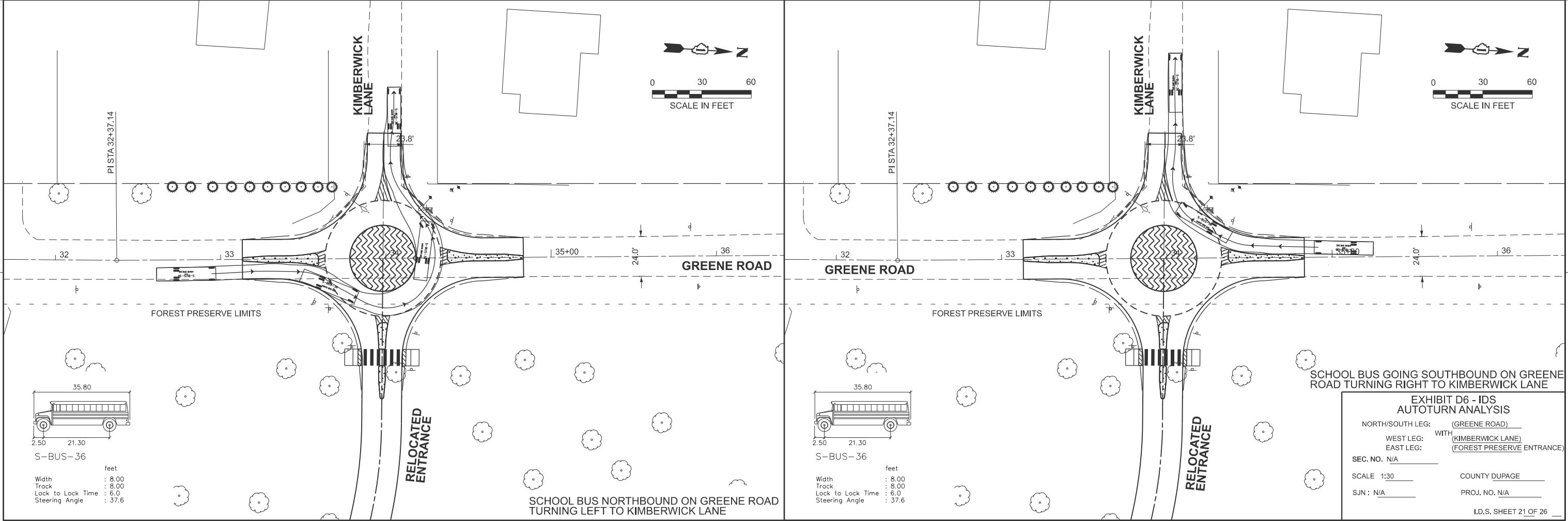
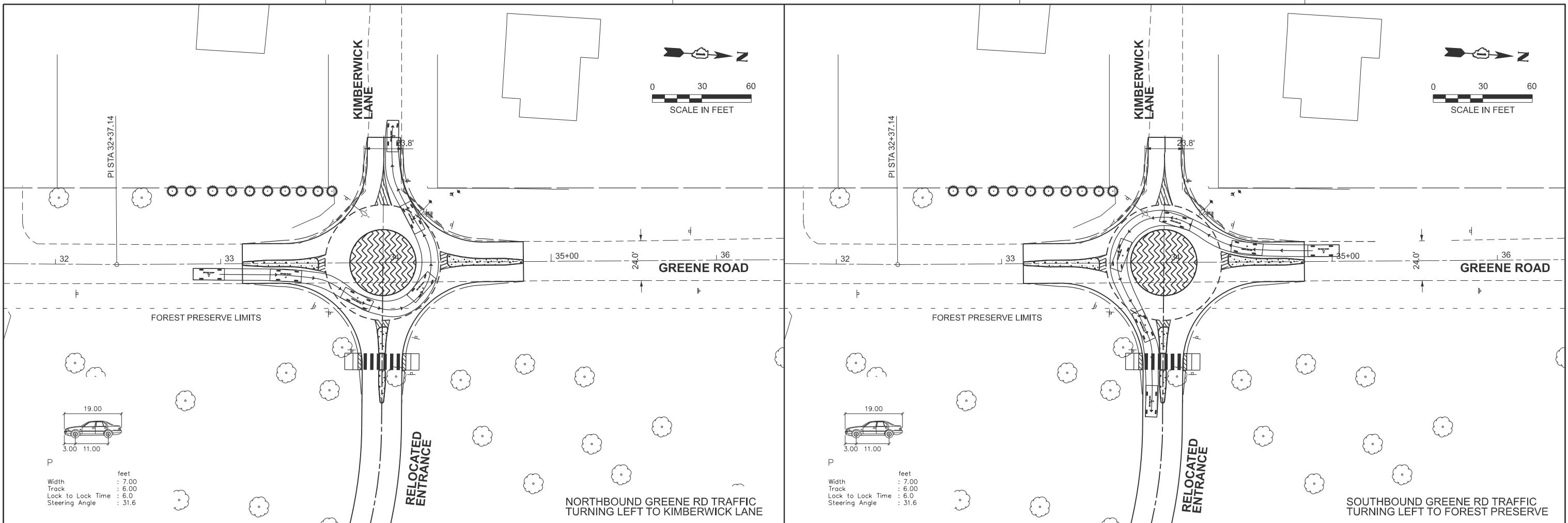
WESTBOUND FOREST PRESERVE TRAFFIC TURNING RIGHT TO GREENE RD

Appendix D Alternative B IDS

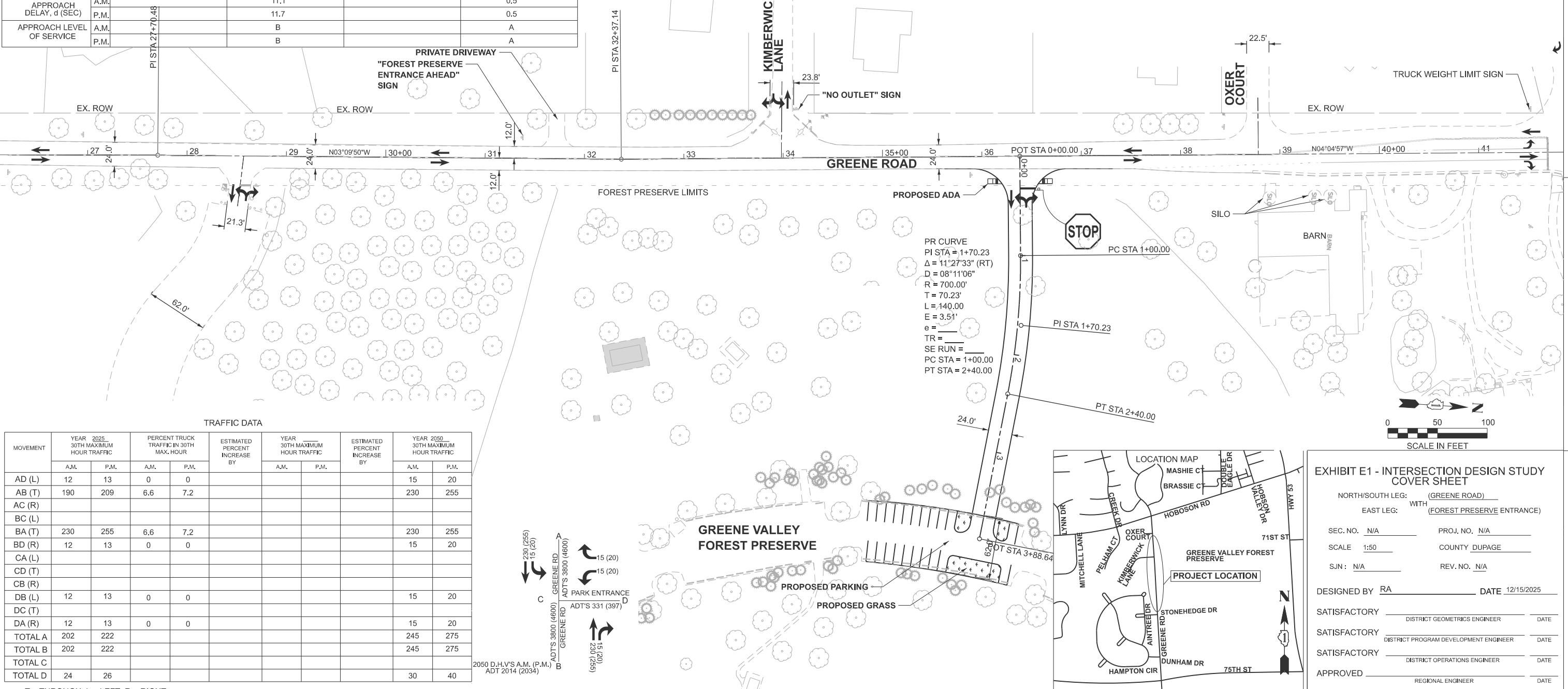


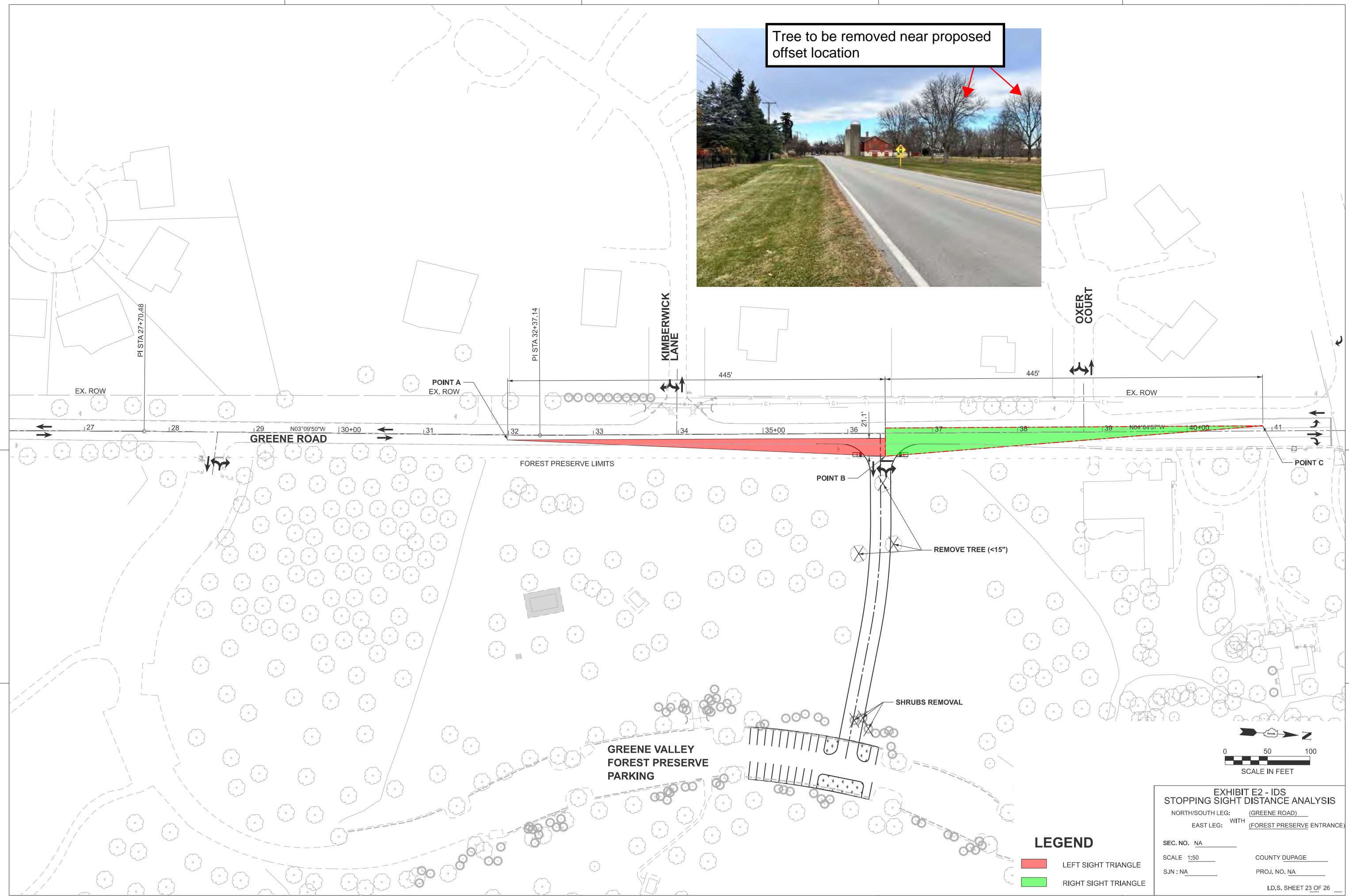

Greene Road and Kimberwick Lane intersection, (Looking East)



PLOT DATE = 12/17/2025
FILE NAME = dwvSameScnw.bentley.com\staniec-pw02\Documents\17368200\CADdata\CADSheets\12345-shd\B-2.dgn
PLOT SCALE = 1:3000
USER NAME = rmarra



Trees on east side of Greene Road at proposed entrance

PLOT DATE = 12/17/2025
FILE NAME = sc-pw42/Documents/173609/2001/CADDdata/CADsheets/D12345-sh4t4sB4_1.dgn
FILE SOURCE = SCSALES


Appendix E Alternative C IDS

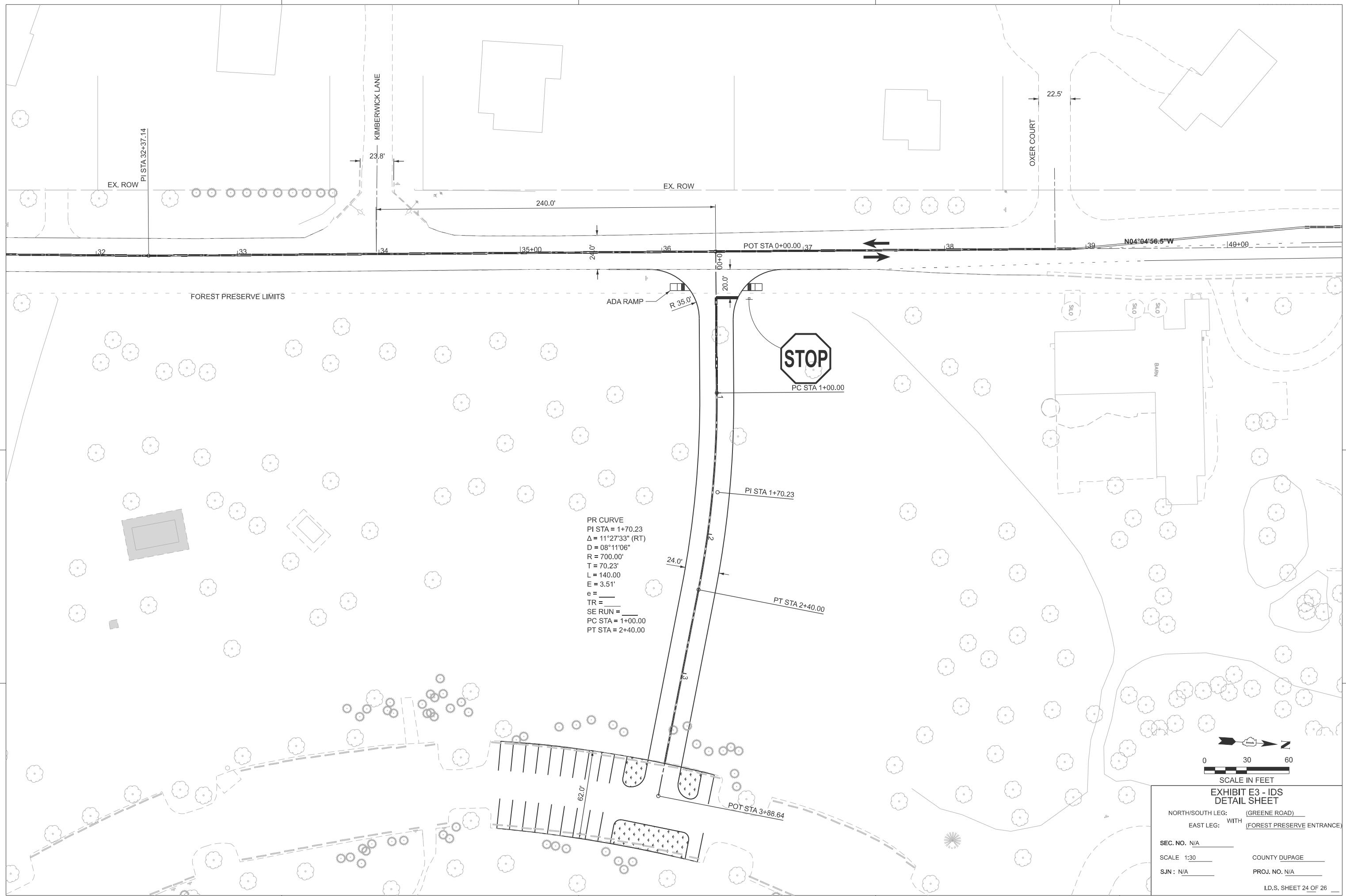

TWO-WAY STOP-CONTROLLED CAPACITY DESIGN ANALYSIS

PROGRAM USED: HCS 2026, VERSION: 8.5 PEAK HOUR FACTOR: 0.95
 SIGNALIZED INTERSECTION(S) WITHIN 0.25 MILES OF INTERSECTION ALONG MAJOR ROUTE? YES
 FLARED APPROACH FOR MINOR STREET RIGHT-TURNING VEHICLE? (YES/NO): YES ON THE EAST APPROACH, N/A ON THE WEST APPROACH.
 SINGLE OR TWO-STAGE GAP ACCEPTANCE? SINGLE

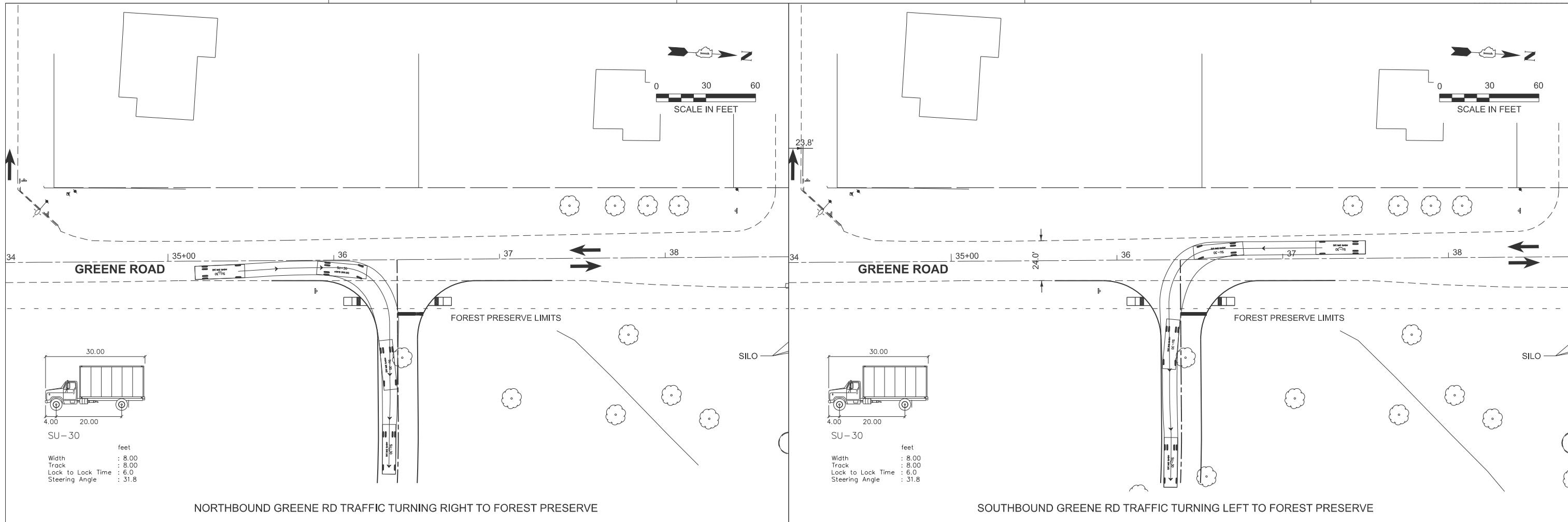
APPROACH	EASTBOUND			WESTBOUND			NORTHBOUND			SOUTHBOUND		
	MINOR			MINOR			MAJOR			MAJOR		
MAJOR OR MINOR LEG?	L	T	R	L	T	R	L	T	R	L	T	R
NUMBER OF LANES				0	1	0	1	0	0	0	1	
2050 30TH MAX. HOUR TRAFFIC (V) (veh/h)	A.M.			15		15	230	15	15	230		
PEDESTRIANS/HOUR (ped/h) COUNT OR ESTIMATE?	P.M.			20		20	255	20	20	255		
CAPACITY $C_{p,x}$ OR C_x (veh/h)	A.M.			621				1319				
V/C RATIO $(V/C)_{p,x}$	P.M.			578				1284				
STORAGE QUEUE (NO. OF VEHICLES)	A.M.			0.05				0.01				
P.M.				0.07				0.02				
CONTROL DELAY (SECONDS)	A.M.			0.2				0.0				
P.M.				0.2				0.0				
LANE GROUP LEVEL OF SERVICE	A.M.			11.1				7.8	0.1			
P.M.				11.7				7.9	0.2			
APPROACH DELAY, d (SEC)	A.M.			B				A	A			
P.M.				B				A	A			
APPROACH LEVEL OF SERVICE	A.M.			11.1				0.5				
P.M.				11.7				0.5				

PLOT DATE = 12/17/2025
 FILE NAME = D12345-sht-idsC-1.dgn
 PLOT SAME = NO
 USER NAME = mmansour
 PLOT SCALE = 1:5000

Tree to be removed near proposed offset location


LEGEND

A diagram showing the left sight triangle. It consists of two horizontal rectangles: a red one on top and a green one below it.


EXHIBIT E2 - IDS
STOPPING SIGHT DISTANCE ANALYSIS

PLOT DATE = 12/17/2025

PLOT DATE = 12/17/2025
FILE NAME = pw://stantec
PLOT SCALE = \$SCALE\$
USER NAME = REDACTED

NORTHBOUND GREENE RD TRAFFIC TURNING RIGHT TO FOREST PRESERVE

SOUTHBOUND GREENE RD TRAFFIC TURNING LEFT TO FOREST PRESERVE

WESTBOUND FOREST PRESERVE TRAFFIC TURNING LEFT TO GREENE RD

WESTBOUND FOREST PRESERVE TRAFFIC TURNING RIGHT TO GREENE RD

EXHIBIT E5 - IDS AUTOTURN ANALYSIS

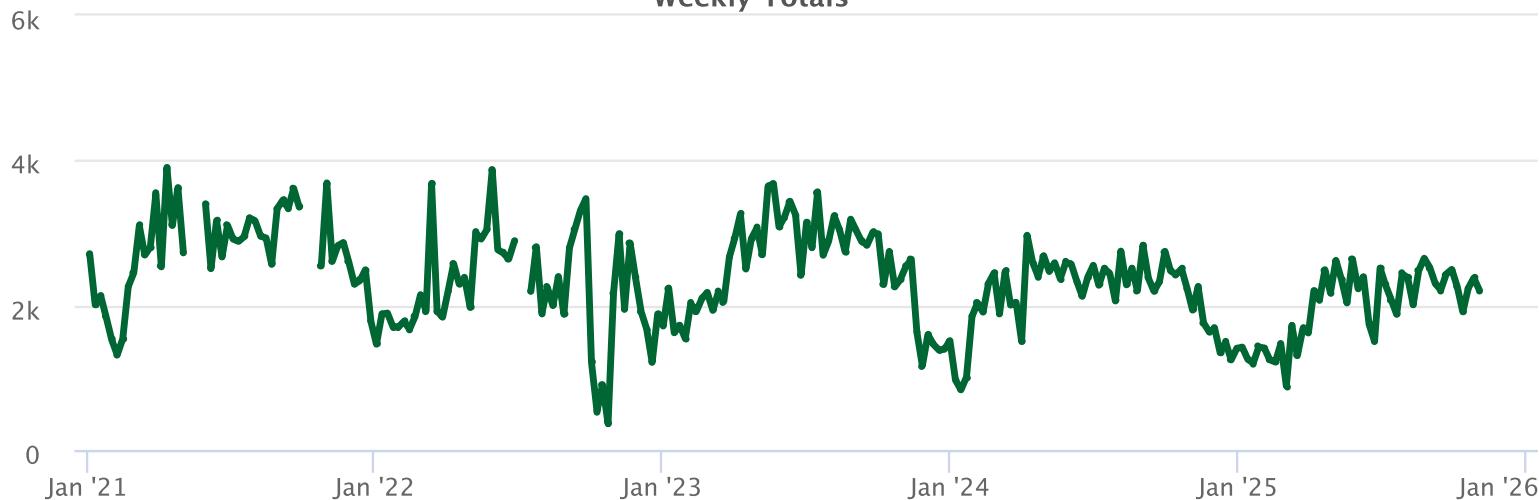
NORTH/SOUTH LEG: (GREENE ROAD)
EAST LEG: WITH (FOREST PRESERVE ENTRANCE)

SEC. NO. N/A
SCALE 1:30
SJN: N/A
COUNTY DUPAGE
PROJ. NO. N/A

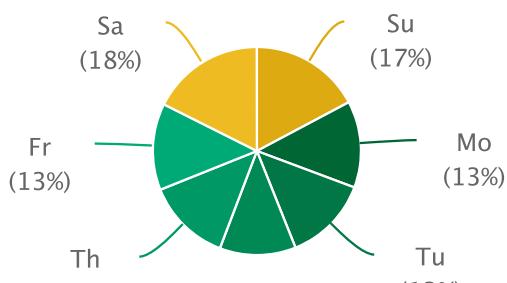
I.D.S. SHEET 26 OF 26

Appendix F Forest Preserve Visitor Data

East – Greene Valley North

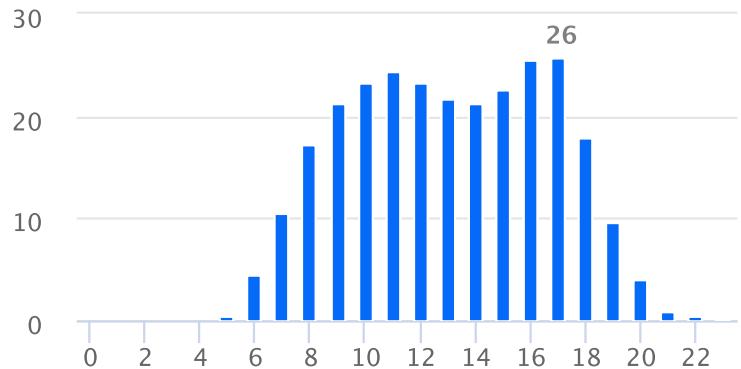

Site report: from 2021-01-01 to 2026-01-01

Made by: eastintern@dupageforest.org on 2025-11-12

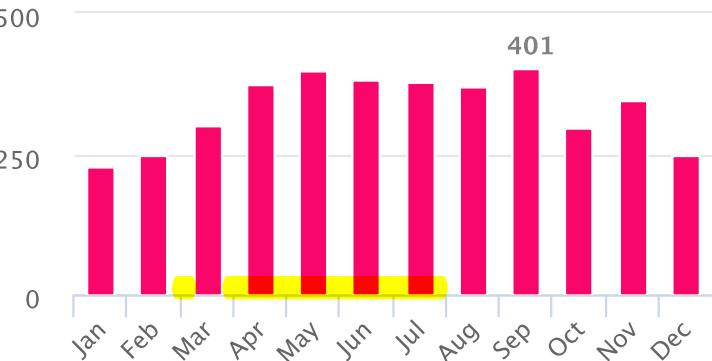

Made with: TRAFx DataNet (www.trafx.net)

Divide 2 (Yes)

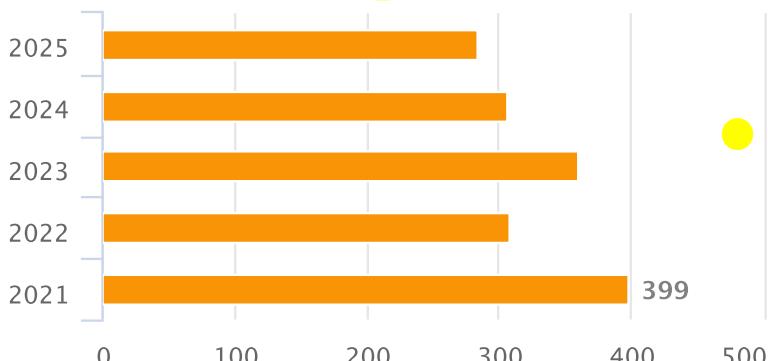
Weekly Totals*



Daily*



Avg. daily traffic: 330.7


Hourly**

Monthly*

Yearly*

* Weekly and Daily are calculated from Average Daily Traffic (ADT); Monthly and Yearly show ADT values.

** Based on last year of data only.

Appendix G CMAP Traffic Projections

November 7, 2025

Kevin Horsfall
Director of Planning and Development
Forest Preserve District of DuPage County
3 S 580 Naperville Road
Wheaton, IL 60189

Subject: Greene Road between Hobson Road and 75th Street

Forest Preserve District of DuPage County

Dear Mr. Horsfall:

In response to a request made on your behalf and dated November 6, 2025, we have developed year 2050 average daily traffic (ADT) projections for the subject location.

ROAD SEGMENT	Current ADT	Year 2050 ADT
Greene Rd b/w 75 th St and Hobson Rd, all vehicle	3,800	4,600
Greene Rd b/w 75 th St and Hobson Rd, MU truck	275	333
Greene Rd b/w 75 th St and Hobson Rd, SU truck	250	303

Traffic projections are developed using existing ADT data provided in the request letter and the results from the June 2025 CMAP Travel Demand Analysis. The regional travel model uses CMAP 2050 socioeconomic projections and assumes the implementation of the ON TO 2050 Comprehensive Regional Plan for the Northeastern Illinois area. The provision of this data in support of your request does not constitute a CMAP endorsement of the proposed development or any subsequent developments.

If you have any questions, please call me at (312) 386-8806 or email me at
jrodriguez@cmap.illinois.gov

Jose Rodriguez, PTP, AICP
Senior Planner, Research & Analysis

cc: Arora, Phan, Pieniazek (Stantec); Arnt (FPD DuPage Co)
\\2025_trafficForecasts\\Woodridge\\du-53-25\\du-53-25.docx

TRAFFIC FORECAST RECORD

Record Number: du-53-25

Type of Report: Projection

Year Sought: 2050

Analyst: JAR

Organization Requesting Forecast: Stantec

Contact: Ravi Arora, PE, PTOE, RSP2I

Email or Phone: Ravi.Arora@stantec.com

Sponsor: Forest Preserve District of DuPage County

Date request was received: 11/6/2025

Date that response was emailed: 11/7/2025

Facility Location: Greene Road between Hobson Road and 75th Street

Municipality: Woodridge

Appendix H Design Criteria and Design Calculations

Design Criteria and Design Calculations

Exhibit H1 – Horizontal Alignment Maximum Deflection without Curve Guideline (IDOT BLRS)

29-2-2 BUREAU OF LOCAL ROADS & STREETS
HORIZONTAL ALIGNMENT August 2016

29-2.02 Basic Curve Equation

The point-mass formula is used to define vehicular operation around a curve. Where the curve is expressed using its radius, the basic equation for a simple curve is:

$$R = \frac{V^2}{15(e + f)} \quad (\text{US Customary}) \text{ Equation 29-2.1}$$

$$R = \frac{V^2}{127(e + f)} \quad (\text{Metric}) \text{ Equation 29-2.1}$$

where:

R = radius of curve, ft (m)

V = design speed, mph (km/h)

e = superelevation rate, decimal

f = side friction factor (constant based on design speed)

29-2.03 Minimum Radii

Figures 29-2A ($e_{max} = 8.0\%$), 29-2B ($e_{max} = 6.0\%$), and 29-2C ($e_{max} = 4.0\%$) present the minimum radii for open-roadway conditions. See Section 29-3.01 for the selection of e_{max} . In most cases, the designer should avoid the use of minimum radii because this results in the use of maximum superelevation rates. These rates should be avoided because the facility must often accommodate vehicles traveling over a wide range of speeds. This is particularly true in Illinois where the entire State is subject to ice and snow. Where vehicular speeds are slow or stopped and the rate of superelevation is high, vehicles could slide down the cross slope when the pavement is icy.

29-2.04 Side Friction Factor

The side friction factor (f) represents the contribution of the roadway/tire interface to counterbalance the centrifugal force of a vehicle traversing the curve. This factor varies according to design speed and open-roadway or low-speed urban street conditions. It is important to recognize that the side friction factor represents a threshold of driver discomfort and not the point of impending skid. Figure 29-2D presents the side friction factors used in Equation 29-2.1 for open-roadway conditions.

29-2.05 Maximum Deflection Without Curve

It may be appropriate to omit a horizontal curve where very small deflection angles are present. As a guide, the designer may retain deflection angles of approximately 1° or less (urban) and $0^\circ 15'$ (rural) on local agency facilities without providing a horizontal curve. For these angles, the absence of a horizontal curve should not affect operations or aesthetics.

HARD COPIES UNCONTROLLED

Exhibit H2 – Horizontal Alignment Minimum Radius Guideline (IDOT BLRS)

BUREAU OF LOCAL ROADS & STREETS HORIZONTAL ALIGNMENT			
29-2-4	August 2016		
US Customary		Metric	
Design Speed (mph)	Minimum Radii R_{min} (ft) *	Design Speed (km/h)	Minimum Radii R_{min} (m) *
20	86	30	22
25	154	40	47
30	250	50	86
35	371	60	135
40	533	70	203
45	711	80	280
50	926	90	---
55	---	100	---
60	---		

MINIMUM RADII
($e_{max} = 4.0\%$, Open-Roadway Conditions)

Figure 29-2C

Exhibit H3 – Minimum Horizontal Curve Length Guideline (IDOT BLRS)

BUREAU OF LOCAL ROADS & STREETS
August 2016 HORIZONTAL ALIGNMENT 29-2-5

29-2.06 Minimum Length of Curve

The radius is used to calculate the length of curve by using the following equation:

$$L = \frac{2\pi R \Delta}{360} \quad \text{Equation 29-2.2}$$

where:

L = length of curve, ft (m)

Δ = deflection angle, degrees

R = radius of curve, ft (m)

A longer than calculated length of curve may be necessary depending on the design speed. Figure 29-2E provides design values for the minimum length of curve based on design speed.

For small deflection angles, horizontal curves should be sufficiently long to avoid the appearance of a kink. With a deflection angle of 5°, the minimum length of curve should be 350 ft (120 m) for a design speed of 55 mph (100 km/h). Where the deflection angle is 5° or less, the minimum length of curve in Figure 29-2E should be adjusted by the factor in Figure 29-2F.

US Customary			Metric		
Design Speed V (mph)	Minimum Length of Curve, L (ft)	Curve Radius, R* (ft)	Design Speed, V (km/h)	Minimum Length of Curve, L (m)	Curve Radius, R* (m)
20	100	1145	30	30	344
25	100	1145	40	30	344
30	100	1145	50	30	344
35	150	1720	60	50	573
40	200	2290	70	70	802
45	250	2865	80	90	1031
50	300	3440	90	110	1260
55	350	4010	100	130	1490
60	400	4585			

* $R = 360L / 2\pi\Delta$

MINIMUM LENGTHS OF CURVE ($\Delta = 5^\circ$)

Figure 29-2E

HARD COPIES UNCONTROLLED

Exhibit H4 – K-Value for Crest Curve Guideline (IDOT BLRS)

BUREAU OF LOCAL ROADS & STREETS 30-2-2 VERTICAL ALIGNMENT August 2016							
US Customary				Metric			
Design Speed (mph)	SSD ⁽¹⁾ (ft)	Rate of Vertical Curvature, K ⁽²⁾⁽³⁾ (ft/%)	Minimum Curve Length (ft)	Design Speed (km/h)	SSD ⁽¹⁾ (m)	Rate of Vertical Curvature, K ⁽²⁾⁽⁴⁾ (m/%)	Minimum Curve Length (m)
20	115	7	60	30	35	2	18
25	155	12	75	40	50	4	24
30	200	19	90	50	65	7	30
35	250	29	105	60	85	11	36
40	305	44	120	70	105	17	42
45	360	61	135	80	130	26	48
50	425	84	150	90	160	39	54
55	495	114	165	100	185	52	60
60	570	151	180				

Notes:

1. SSD values are from [Figure 28-1A](#).
2. Maximum K-value for drainage on curbed roadways and bridges is 167 (51).
3.
$$K = \frac{SSD^2}{2158}, \text{ where } : h_1 = 3.5 \text{ ft}, h_2 = 2 \text{ ft}$$
4.
$$K = \frac{SSD^2}{658}, \text{ where } : h_1 = 1.080 \text{ m}, h_2 = 600 \text{ mm}$$

**K-VALUES FOR CREST VERTICAL CURVES — STOPPING SIGHT DISTANCES
(Passenger Cars)**

Figure 30-2A

Exhibit H5 – K-Value for Sag Curve Guideline (IDOT BLRS)

BUREAU OF LOCAL ROADS & STREETS							
VERTICAL ALIGNMENT				30-2-7			
US Customary				Metric			
Design Speed (mph)	SSD ⁽¹⁾ (ft)	Rate of Vertical Curvature, K ⁽²⁾⁽³⁾ (ft/%)	Minimum Curve Length (ft)	Design Speed (km/h)	SSD ⁽¹⁾ (m)	Rate of Vertical Curvature, K ⁽²⁾⁽⁴⁾ (m/%)	Minimum Curve Length (m)
20	115	17	60	30	35	6	18
25	155	26	75	40	50	9	24
30	200	37	90	50	65	13	30
35	250	49	105	60	85	18	36
40	305	64	120	70	105	23	42
45	360	79	135	80	130	30	48
50	425	96	150	90	160	38	54
55	495	115	165	100	185	45	60
60	570	136	180				

Notes:

1. SSD values are from [Figure 28-1A](#).
2. Maximum K-value for drainage on curbed roadways and bridges is 167 (51).
3.
$$K = \frac{SSD^2}{400 + 3.5 SSD}$$
, where $h_3 = 2 \text{ ft}$
4.
$$K = \frac{SSD^2}{120 + 3.5 SSD}$$
, where $h_3 = 600 \text{ mm}$

**K-VALUES FOR SAG VERTICAL CURVES — STOPPING SIGHT DISTANCES
(Passenger Cars)**

Figure 30-2D

For Sag Curve in front of existing entrance, K = 42.75

Using note 3 equation

Existing Stopping Sight Distance (SSD) for sag curve = 225 feet.

For design speed of 40 mph, SSD needed = 305 feet.

Sag curve in front of existing entrance does not meet the SSD criteria.

Exhibit H6 – Minimum vertical curve length Guideline (IDOT BLRS)

BUREAU OF LOCAL ROADS & STREETS
30-2-4 VERTICAL ALIGNMENT August 2016

3. **Minimum Length.** Vertical curve lengths should also meet the criteria in the following equations:

$$L_{min} = 3V \quad \text{(US Customary) Equation 30-2.3}$$
$$L_{min} = 0.6V \quad \text{(Metric) Equation 30-2.3}$$

Where:

L_{min} = minimum length of vertical curve, ft (m)
 V = design speed, mph (km/h)

Designs with vertical curve lengths of less than 90 ft (27 m) should be avoided, since these are difficult to construct.

4. **Passing Sight Distance (PSD).** At some locations, it may be desirable to provide PSD in the design of crest vertical curves. [Section 28-2](#) discusses the application and design values for PSD on two-lane, two-way highways. These "PSD" values are used in the basic equation for crest vertical curves (Equation 30-2.1). The height of eye (h_1) is 3.5 ft (1.080 m) and the height of object (h_2) is 3.5 ft (1.080 m). Figure 30-2C presents the K-values for passenger cars using the PSD presented in [Section 28-2](#).

5. **Drainage.** Proper drainage should be considered in the design of crest vertical curves where curbed sections are used. Typically, drainage problems should not be experienced if the vertical curvature is sharp enough so that a minimum longitudinal grade of at least 0.3% is reached at a point about 50 ft (15 m) from either side of the apex. To ensure that this objective is achieved, determine the length of the crest vertical curve assuming a K-value of 167 (51) or less. For crest vertical curves on a curbed section where this K-value is exceeded, carefully evaluate the drainage design near the apex.

6. **Alignment Coordination.** On rural facilities where crest vertical curves and horizontal curves occur at the same location, use the K-values in Figure 30-2A to ensure that the horizontal curve is visible as drivers approach the vertical curve.

HARD COPIES UNCONTROLLED

Exhibit H7 – Stopping Sight Distance Guideline (IDOT BLRS)

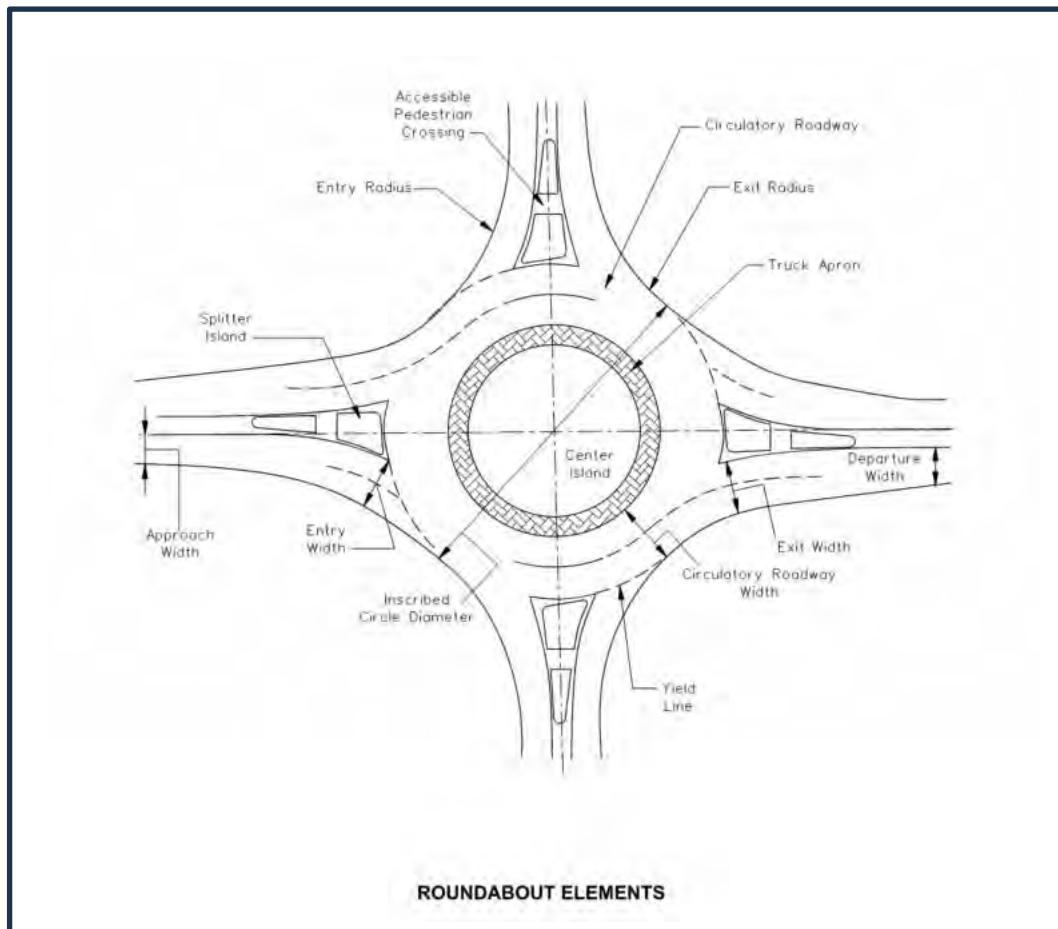
BUREAU OF LOCAL ROADS & STREETS							
SIGHT DISTANCE				August 2016			
US Customary				Metric			
Design Speed (mph)	Brake ¹ Reaction Distance (ft)	Braking ² Distance On Level (ft)	Design SSD (ft)	Design Speed (km/h)	Brake ¹ Reaction Distance (m)	Braking ² Distance On Level (m)	Design SSD (m)
20	73.5	38.4	115	30	20.9	10.3	35
25	91.9	60.0	155	40	27.8	18.4	50
30	110.3	86.4	200	50	34.8	28.7	65
35	128.6	117.6	250	60	41.7	41.3	85
40	147.0	153.6	305	70	48.7	56.2	105
45	165.4	194.4	360	80	55.6	73.4	130
50	183.8	240.0	425	90	62.6	92.9	160
55	202.1	290.3	495	100	69.5	114.7	185
60	220.5	345.5	570				

Notes:

1. Brake reaction distance based on a time of 2.5 s.
2. Driver deceleration based on a rate of 11.2 ft/s^2 (3.4 m/s^2).

STOPPING SIGHT DISTANCE ON LEVEL ROADWAYS

Figure 28-1A


US Customary							Metric							
Design Speed (mph)	Design SSD (ft)						Design Speed (km/h)	Design SSD (m)						
	Downgrades			Upgrades				Downgrades			Upgrades			
	3%	6%	9%	3%	6%	9%		3%	6%	9%	3%	6%	9%	
20	116	120	126	109	107	104	30	32	35	35	31	30	29	
25	158	165	173	147	143	140	40	50	50	53	45	44	43	
30	205	215	227	200	184	179	50	66	70	74	61	59	58	
35	257	271	287	237	229	222	60	87	92	97	80	77	75	
40	315	333	354	289	278	269	70	110	116	124	100	97	93	
45	378	400	427	344	331	320	80	136	144	154	123	118	114	
50	446	474	507	405	388	375	90	164	174	187	148	141	136	
55	520	553	593	469	450	433	100	194	207	223	174	167	160	
60	598	638	686	538	515	495								

STOPPING SIGHT DISTANCE ON GRADES

Figure 28-1B

HARD COPIES UNCONTROLLED

Exhibit H8 – Roundabout Elements (IDOT BDE)

Exhibit H9 – Selection of Design Vehicle for Intersection Design guideline (IDOT BLRS)

BUREAU OF LOCAL ROADS & STREETS

Aug 2007

INTERSECTIONS

34-1(15)

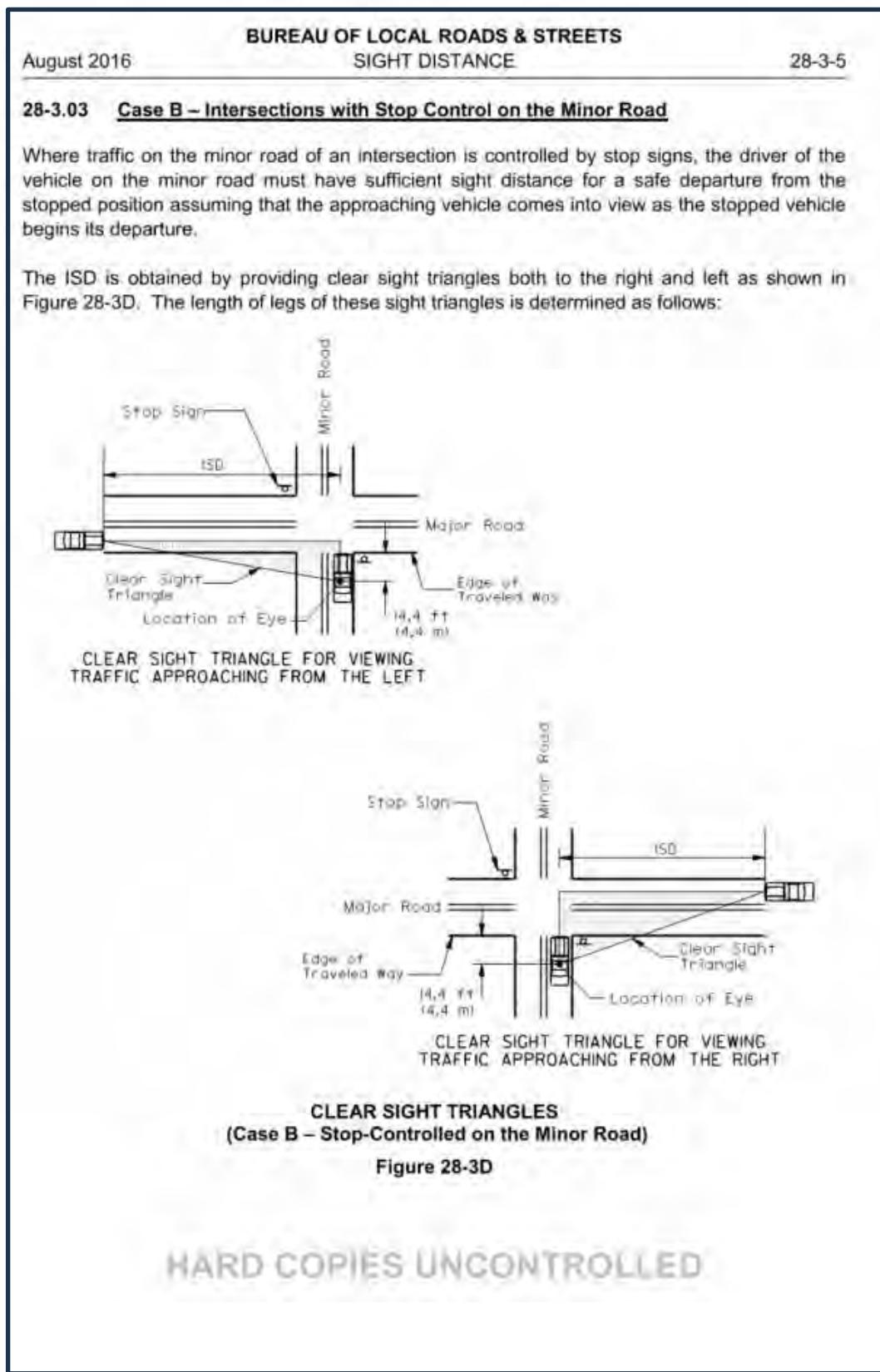
recreational area. Under some circumstances the passenger car with a trailer (P/T) may be the appropriate design vehicle (e.g., campground areas, boat launches).

For Turn Made		Design Vehicle ⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾⁽⁵⁾
From	Onto	
Freeway Ramp	Other Facilities	WB-65 (WB-20)
Other Facilities	Freeway Ramp	WB-65 (WB-20)
Arterial	Arterial Collector Local Local (Residential)	WB-65 (WB-20) WB-55 (WB-17) WB-50 (WB-15) SU*
Collector	Arterial Collector Local Local (Residential)	WB-55 (WB-17) WB-55 (WB-17) WB-50 (WB-15) SU*
Local	Arterial Collector Local Local (Residential)	WB-50 (WB-15) WB-50 (WB-15) SU* SU**
Local (Residential)	Arterial Collector Local Local (Residential)	SU* SU* SU** SU**

*With encroachment, a WB-50 (WB-15) vehicle should physically be able to make the turn.

**With encroachment, the selected design vehicle should physically be able to make the turn.

Notes:


0. Use this Figure for new construction and reconstruction projects.
1. A smaller design vehicle may be considered after an investigation of conditions. Justification must be submitted for intersections with State highways.
2. For 3R projects, the design vehicle will be site specific. See Chapter 33.
3. A larger design vehicle may be required for intersections of two 80,000 lb (36,000 kg) truck routes.

**SELECTION OF DESIGN VEHICLE AT INTERSECTIONS
(Functional Classification)**

Figure 34-1G

HARD COPIES UNCONTROLLED

Exhibit H10 – Intersection Sight Distance Guideline (IDOT BLRS) (1 of 3)

Exhibit H11 – Intersection Sight Distance Guideline (IDOT BLRS) (2 of 3)

BUREAU OF LOCAL ROADS & STREETS		
28-3-6	SIGHT DISTANCE	August 2016
<p>1. Minor Road. The length of leg along the minor road is based on two parts. The first is the location of the driver's eye on the minor road. This is typically assumed to be 15 ft (4.5 m) from the edge of traveled way for the major road and in the center of the lane on the minor road. The second part is based on the distance to the center of the vehicle on the major road. For right-turning vehicles, this is assumed to be the center of the closest travel lane from the left. For left-turning vehicles, this is assumed to be the center of the closest travel lane for vehicles approaching from the right. See Figure 28-3E.</p> <p>2. Major Road. The length of the sight triangle leg or ISD along the major road is determined using the following equation:</p>		
	$ISD = 1.47 V_{\text{major}} t_g$	(US Customary) Equation 28-3.1
	$ISD = 0.278 V_{\text{major}} t_g$	(Metric) Equation 28-3.1
<p>Where:</p> <p>ISD = length of sight triangle leg along major road, ft (m) V_{major} = design speed of major road, mph (km/h) t_g = time gap for minor road to enter the major road, sec</p> <p>The critical time gap (t_g) varies according to the design vehicle, the maneuver type, the grade on the minor road approach, the number of lanes on the major roadway, the type of operation, and the intersection skew.</p>		
3.	Design Vehicles. For local roads and streets, assume a passenger car as the design vehicle (i.e., $t_g = 7.5$ seconds).	
4.	Grades. If the approach grade on the minor road is on an upgrade that exceeds 3%, add 0.2 sec for each percent grade to t_g .	
5.	ISD Values. Figure 28-3E provides the ISD criteria for a passenger car turning left or right or crossing a two-lane major road. For other types of facilities (e.g., four-lanes, medians) or where trucks may control the design, see Section 36-6 of the <i>BDE Manual</i> .	
<p>At a minimum, provide Case B sight distance at all intersections for reconstruction and new construction projects. Also, provide Case B sight distance on projects where the vertical alignment is changed.</p>		

Exhibit H12 – Intersection Sight Distance Guideline (IDOT BLRS)(3 of 3)

BUREAU OF LOCAL ROADS & STREETS			
August 2016		SIGHT DISTANCE	
US Customary		Metric	
Design Speed (V_{major}) (mph)	ISD (ft) ⁽¹⁾⁽²⁾	Design Speed (V_{major}) (km/h)	ISD (m) ⁽¹⁾⁽²⁾
20	225	30	65
25	280	40	85
30	335	50	105
35	390	60	130
40	445	70	150
45	500	80	170
50	555	90	190
55	610	100	210
60	665		

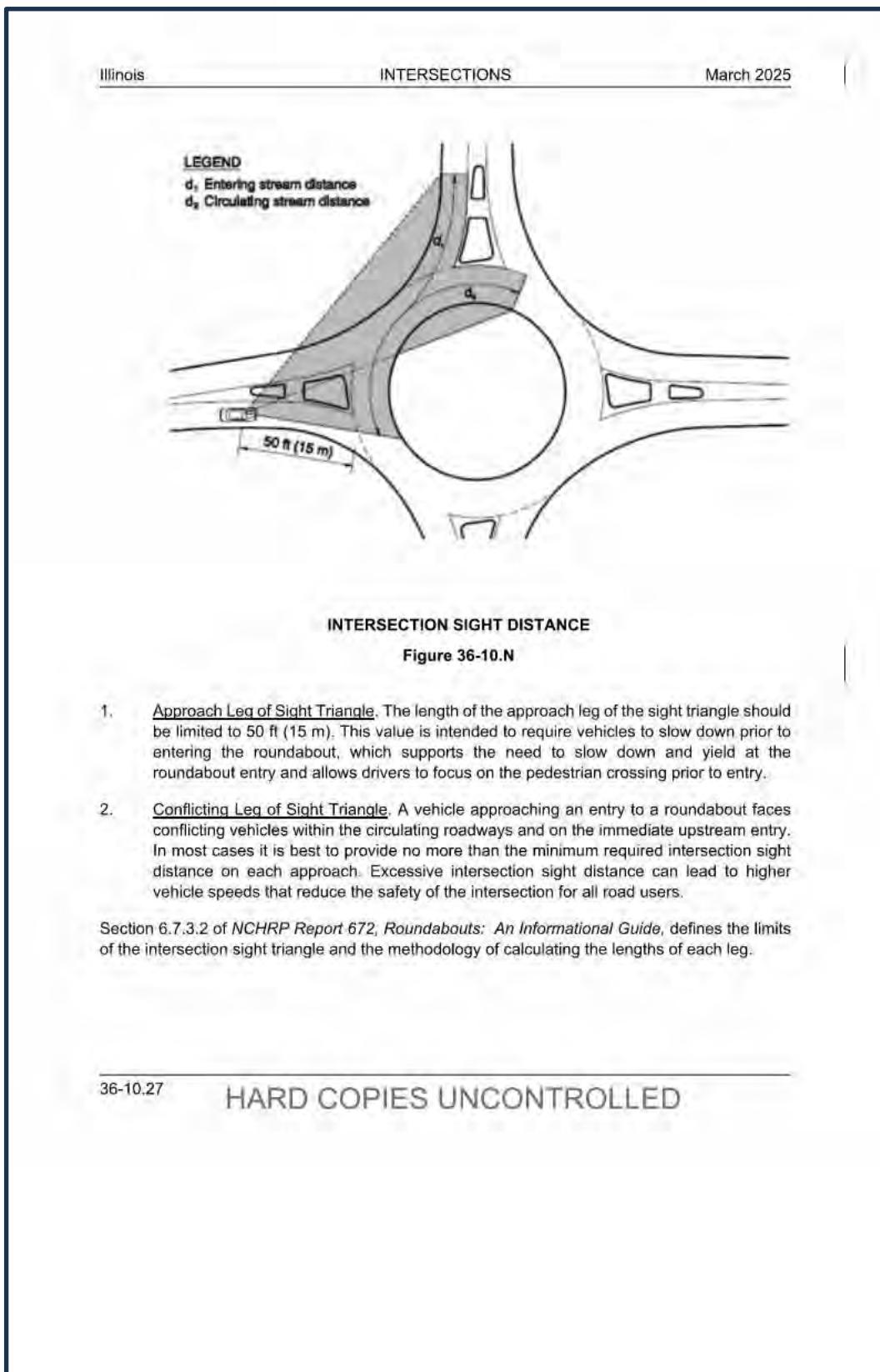
Notes:

1. These ISD values assume crossing or left or right turns onto a two-lane facility without a median for a passenger car. For other types of facilities (e.g., four-lanes, medians) or where trucks may control the design, see [Section 36-6](#) of the BDE Manual.
2. Where the approach grade on the minor road is on an upgrade that exceeds 3%, add 0.2 sec for each percent grade to t_g .

INTERSECTION SIGHT DISTANCES
(Two-Lane Facilities)
(Case B – Stop Control on the Minor Road)

Figure 28-3E

Intersection Sight Distance was calculated for 4% grade as:


$$ISD = 1.47 * V_{Major} * t_g \text{ (Using Equation 28-3-1 from Exhibit L7)}$$

V_{major} (For Greene Road) = 40 mph

$$t_g = 7.5 \text{ (s)} + 0.2 \text{ (s)} = 7.7 \text{ s (adjusted for 4% grade)}$$

$$ISD = 1.47 * 40 * 7.7 = 452.7 \approx 455 \text{ feet}$$

Exhibit H13 – Roundabout Sight Distance Triangle Guideline (IDOT BDE)

Exhibit H14 – Level Of Service Guideline (IDOT BDLS)

BUREAU OF LOCAL ROADS & STREETS
August 2016 BASIC DESIGN CONTROLS 27-6-5

27-6.04 Level of Service (LOS)

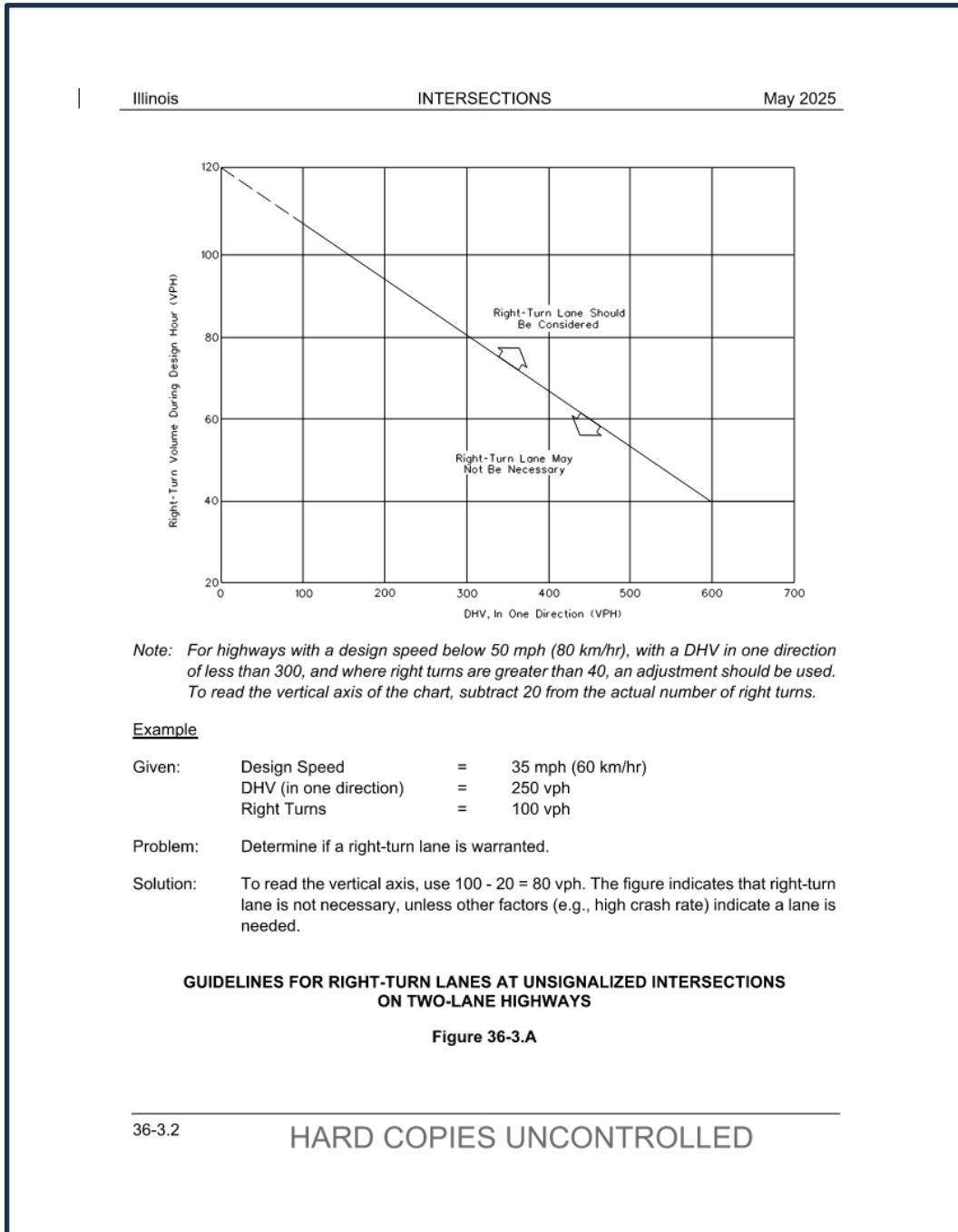
LOS describes a quantitative stratification of a performance measure or measures that represents quality of service, measured on an A to F scale. A designated LOS is described in terms of service measures such as speed, density, delay, or percent time-spent-following.

Because drivers will accept different driving operational conditions, including lower travel speeds on different facilities, it is not practical to establish one LOS for application to every type of highway. Therefore, various levels of service have been established for the different types of highways facilities, location (i.e., rural or urban) and the scope of the improvement.

The *HCM* has established service measures used to define LOS for transportation system elements on various types of facilities. These are presented in Figure 27-6A for those elements on local roads and streets. For each service measure, the *HCM* provides the analytical tools to calculate the numerical value. Note that highway capacity service measures may be segregated into two broad categories: (1) uninterrupted flow, or open highway conditions, and (2) interrupted flow, as at stop-controlled or signalized intersections. Uninterrupted flow occurs on facilities where the influence of intersections and abutting property development is not significant, and the design volume can be determined by an hourly rate of flow.

Type of Facility	Service Measures
Vehicular	
Interrupted Flow	
Urban Street Segments	Travel Speed, Base of Free Flow Speed
Signalized Intersection	Delay
Two-way Stop Intersection	Delay
All-way Stop Intersection	Delay
Roundabouts	Delay
Uninterrupted Flow	
Two-lane Highway	Percent Time-Spent-Following, Average
Multilane Highway	Travel Speed, Percent of Free Flow Speed Density
Other Highway Users	
Pedestrian	Space, Delay, LOS Score
Bicycle	LOS Score
Transit	LOS Score
Off-Street Pedestrian or Bicycle Facility	
Pedestrian	Space, Events
Bicycle	LOS Score

SERVICE MEASURES FOR LOS


Figure 27-6A

HARD COPIES UNCONTROLLED

Appendix I Auxiliary Lane Warrant Analysis

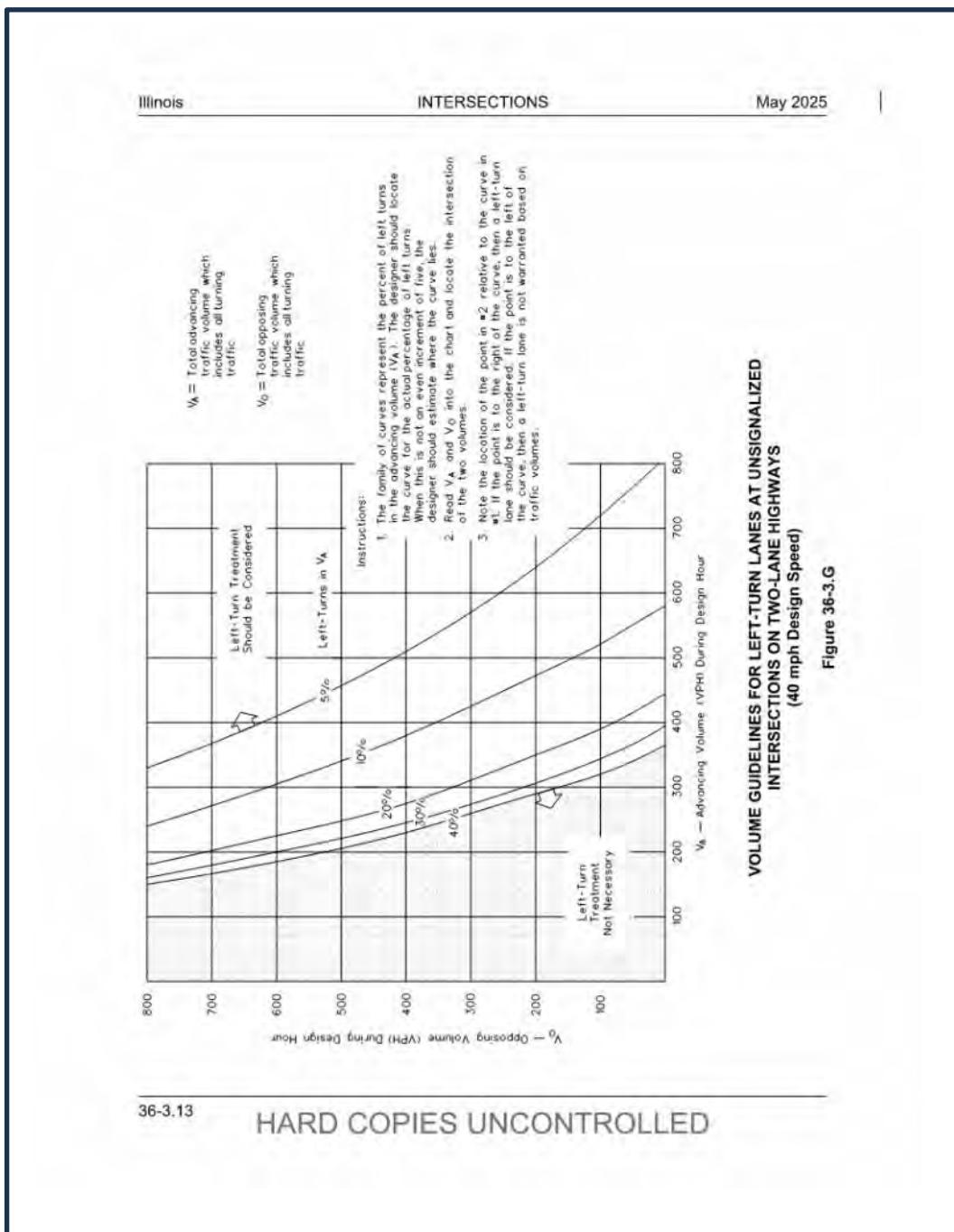
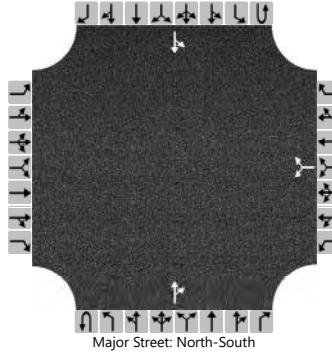
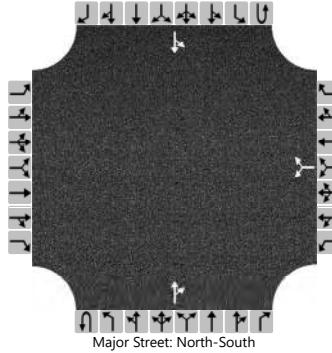

Auxiliary Lane Warrant Analysis

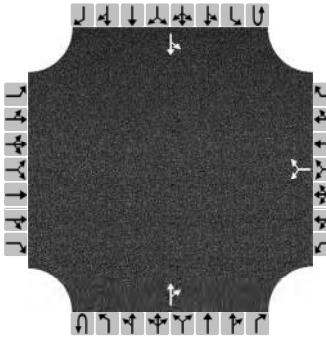
Exhibit I1 – Right-Turn Lane Warrant (for NB Greene Road) and Guidelines from IDOT BDE

Timeframe	Design Speed	Peak Volume	Right Turning Traffic	Criteria Meet
No-Build 2050 Traffic				
AM Peak	40	245	15	No
PM Peak		275	20	No

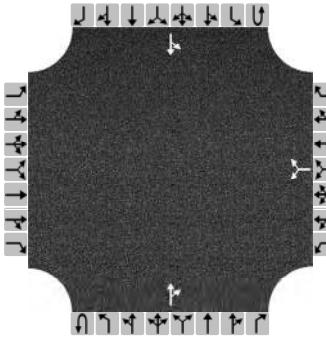

Exhibit I2 – Left - Turn Lane Warrant (for SB Greene Road) and Guidelines from IDOT BDE


Timeframe	Design Speed	Advancing Peak Volume	Opposing Peak Volume	Left Turning Traffic	Percentage of Left Turning Traffic	Criteria Meet
No-Build 2050 Traffic						
AM Peak	40	245	245	15	6.2%	No
PM Peak		275	275	20	7.3%	No

Appendix J Capacity Analysis Worksheets


HCS Two-Way Stop-Control Report

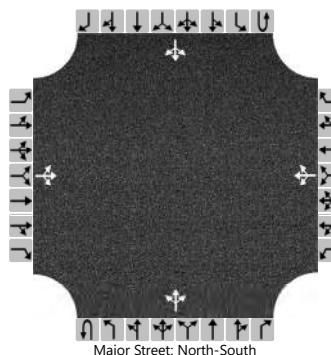
General Information				Site Information																										
Analyst	MP			Intersection		Greene Rd at Greene Valley Forest Preserve e...																								
Agency/Co.	Stantec Consulting			Jurisdiction		Lisle Twp																								
Date Performed	12/3/2025			East/West Street		Greene Valley Forest Preserve entrance																								
Analysis Year	2025			North/South Street		Greene Rd																								
Time Analyzed	Existing AM Peak			Peak Hour Factor		0.95																								
Intersection Orientation	North-South			Analysis Time Period (hrs)		0.25																								
Project Description	Existing Forest Preserve Entrance																													
Lanes																														
 Major Street: North-South																														
Vehicle Volumes and Adjustments																														
Approach	Eastbound			Westbound			Northbound			Southbound																				
Movement	U	L	T	R	U	L	T	R	U	L	T	R																		
Priority		10	11	12		7	8	9	1U	1	2	3																		
Number of Lanes		0	0	0		0	1	0	0	0	0	1																		
Configuration						LR				TR		LT																		
Volume (veh/h)						12		12		190	12	12																		
Percent Heavy Vehicles (%)						0		0				0																		
Proportion Time Blocked																														
Percent Grade (%)						0																								
Right Turn Channelized																														
Median Type Storage	Undivided																													
Critical and Follow-up Headways																														
Base Critical Headway (sec)						7.1		6.2			4.1																			
Critical Headway (sec)						6.40		6.20			4.10																			
Base Follow-Up Headway (sec)						3.5		3.3			2.2																			
Follow-Up Headway (sec)						3.50		3.30			2.20																			
Delay, Queue Length, and Level of Service																														
Flow Rate, v (veh/h)						25					13																			
Capacity, c (veh/h)						685					1370																			
v/c Ratio						0.04					0.01																			
95% Queue Length, Q ₉₅ (veh)						0.1					0.0																			
95% Queue Length, Q ₉₅ (ft)						2.5					0.0																			
Control Delay (s/veh)						10.5					7.7	0.1																		
Level of Service (LOS)						B					A	A																		
Approach Delay (s/veh)				10.5						0.5																				
Approach LOS				B						A																				


HCS Two-Way Stop-Control Report

General Information				Site Information																										
Analyst	MP			Intersection		Greene Rd at Greene Valley Forest Preserve e...																								
Agency/Co.	Stantec Consulting			Jurisdiction		Lisle Twp																								
Date Performed	12/3/2025			East/West Street		Greene Valley Forest Preserve entrance																								
Analysis Year	2025			North/South Street		Greene Rd																								
Time Analyzed	Existing PM Peak			Peak Hour Factor		0.95																								
Intersection Orientation	North-South			Analysis Time Period (hrs)		0.25																								
Project Description	Existing Forest Preserve Entrance																													
Lanes																														
 Major Street: North-South																														
Vehicle Volumes and Adjustments																														
Approach	Eastbound			Westbound			Northbound			Southbound																				
Movement	U	L	T	R	U	L	T	R	U	L	T	R																		
Priority		10	11	12		7	8	9	1U	1	2	3																		
Number of Lanes		0	0	0		0	1	0	0	0	0	1																		
Configuration						LR				TR		LT																		
Volume (veh/h)						13		13		209	13	13																		
Percent Heavy Vehicles (%)						0		0				0																		
Proportion Time Blocked																														
Percent Grade (%)						0																								
Right Turn Channelized																														
Median Type Storage	Undivided																													
Critical and Follow-up Headways																														
Base Critical Headway (sec)						7.1		6.2			4.1																			
Critical Headway (sec)						6.40		6.20			4.10																			
Base Follow-Up Headway (sec)						3.5		3.3			2.2																			
Follow-Up Headway (sec)						3.50		3.30			2.20																			
Delay, Queue Length, and Level of Service																														
Flow Rate, v (veh/h)						27					14																			
Capacity, c (veh/h)						655					1346																			
v/c Ratio						0.04					0.01																			
95% Queue Length, Q ₉₅ (veh)						0.1					0.0																			
95% Queue Length, Q ₉₅ (ft)						2.5					0.0																			
Control Delay (s/veh)						10.7					7.7	0.1																		
Level of Service (LOS)						B					A	A																		
Approach Delay (s/veh)				10.7						0.5																				
Approach LOS				B						A																				

HCS Two-Way Stop-Control Report

General Information				Site Information																										
Analyst	MP			Intersection		Greene Rd at Greene Valley Forest Preserve e...																								
Agency/Co.	Stantec Consulting			Jurisdiction		Lisle Twp																								
Date Performed	12/3/2025			East/West Street		Greene Valley Forest Preserve entrance																								
Analysis Year	2050			North/South Street		Greene Rd																								
Time Analyzed	No-Build AM Peak			Peak Hour Factor		0.95																								
Intersection Orientation	North-South			Analysis Time Period (hrs)		0.25																								
Project Description	No-Build – Existing Forest Preserve Entrance																													
Lanes																														
 Major Street: North-South																														
Vehicle Volumes and Adjustments																														
Approach	Eastbound			Westbound			Northbound			Southbound																				
Movement	U	L	T	R	U	L	T	R	U	L	T	R																		
Priority		10	11	12		7	8	9	1U	1	2	3																		
Number of Lanes		0	0	0		0	1	0	0	0	0	1																		
Configuration						LR				TR		LT																		
Volume (veh/h)						15		15		230	15	15																		
Percent Heavy Vehicles (%)						0		0				0																		
Proportion Time Blocked																														
Percent Grade (%)						0																								
Right Turn Channelized																														
Median Type Storage	Undivided																													
Critical and Follow-up Headways																														
Base Critical Headway (sec)						7.1		6.2			4.1																			
Critical Headway (sec)						6.40		6.20			4.10																			
Base Follow-Up Headway (sec)						3.5		3.3			2.2																			
Follow-Up Headway (sec)						3.50		3.30			2.20																			
Delay, Queue Length, and Level of Service																														
Flow Rate, v (veh/h)						32					16																			
Capacity, c (veh/h)						621					1319																			
v/c Ratio						0.05					0.01																			
95% Queue Length, Q ₉₅ (veh)						0.2					0.0																			
95% Queue Length, Q ₉₅ (ft)						5.0					0.0																			
Control Delay (s/veh)						11.1					7.8	0.1																		
Level of Service (LOS)						B					A	A																		
Approach Delay (s/veh)				11.1							0.6																			
Approach LOS				B							A																			


HCS Two-Way Stop-Control Report

General Information				Site Information																										
Analyst	MP			Intersection		Greene Rd at Greene Valley Forest Preserve e...																								
Agency/Co.	Stantec Consulting			Jurisdiction		Lisle Twp																								
Date Performed	12/3/2025			East/West Street		Greene Valley Forest Preserve entrance																								
Analysis Year	2050			North/South Street		Greene Rd																								
Time Analyzed	No-Build PM Peak			Peak Hour Factor		0.95																								
Intersection Orientation	North-South			Analysis Time Period (hrs)		0.25																								
Project Description	No-Build – Existing Forest Preserve Entrance																													
Lanes																														
 Major Street: North-South																														
Vehicle Volumes and Adjustments																														
Approach	Eastbound			Westbound			Northbound			Southbound																				
Movement	U	L	T	R	U	L	T	R	U	L	T	R																		
Priority		10	11	12		7	8	9	1U	1	2	3																		
Number of Lanes		0	0	0		0	1	0	0	0	0	1																		
Configuration						LR				TR		LT																		
Volume (veh/h)						20		20		255	20	20																		
Percent Heavy Vehicles (%)						0		0				0																		
Proportion Time Blocked																														
Percent Grade (%)						0																								
Right Turn Channelized																														
Median Type Storage	Undivided																													
Critical and Follow-up Headways																														
Base Critical Headway (sec)						7.1		6.2			4.1																			
Critical Headway (sec)						6.40		6.20			4.10																			
Base Follow-Up Headway (sec)						3.5		3.3			2.2																			
Follow-Up Headway (sec)						3.50		3.30			2.20																			
Delay, Queue Length, and Level of Service																														
Flow Rate, v (veh/h)						42				21																				
Capacity, c (veh/h)						578				1284																				
v/c Ratio						0.07				0.02																				
95% Queue Length, Q ₉₅ (veh)						0.2				0.0																				
95% Queue Length, Q ₉₅ (ft)						5.0				0.0																				
Control Delay (s/veh)						11.7				7.9	0.2																			
Level of Service (LOS)						B				A	A																			
Approach Delay (s/veh)	11.7									0.7																				
Approach LOS	B									A																				

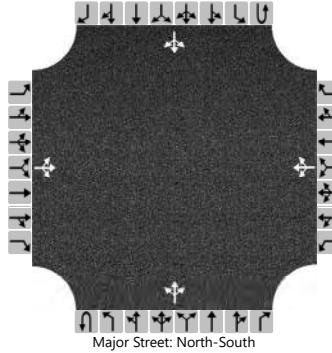
HCS Two-Way Stop-Control Report

General Information		Site Information	
Analyst	MP	Intersection	Greene Rd at Kimberwick/Greene Valley Fore...
Agency/Co.	Stantec Consulting	Jurisdiction	Lisle Twp
Date Performed	12/3/2025	East/West Street	Kimberwick Ln/Greene Valley Forest Preserve...
Analysis Year	2050	North/South Street	Greene Rd
Time Analyzed	Proposed AM Peak	Peak Hour Factor	0.95
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Alternate A – Relocated Forest Preserve Entrance to Kimberwick with Four-Legged Intersection		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes	0	1	0		0	1	0	0	0	0	1	0	0	0	1	0
Configuration		LTR				LTR				LTR				LTR		
Volume (veh/h)	5	5	5		15	5	15		5	230	15		15	230	5	
Percent Heavy Vehicles (%)	0	0	0		0	0	0		0				0			
Proportion Time Blocked																
Percent Grade (%)	0				0											
Right Turn Channelized																
Median Type Storage	Undivided															


Critical and Follow-up Headways

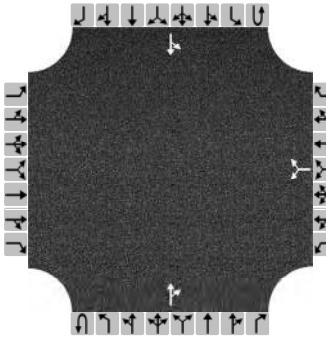
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1			4.1			
Critical Headway (sec)		7.10	6.50	6.20		7.10	6.50	6.20		4.10			4.10			
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2			2.2			
Follow-Up Headway (sec)		3.50	4.00	3.30		3.50	4.00	3.30		2.20			2.20			

Delay, Queue Length, and Level of Service

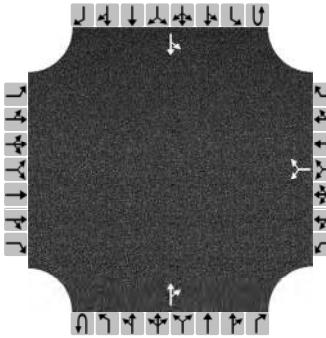
Flow Rate, v (veh/h)		16			37			5				16				
Capacity, c (veh/h)		512			543			1330				1319				
v/c Ratio		0.03			0.07			0.00				0.01				
95% Queue Length, Q ₉₅ (veh)		0.1			0.2			0.0				0.0				
95% Queue Length, Q ₉₅ (ft)		2.5			5.0			0.0				0.0				
Control Delay (s/veh)		12.3			12.1			7.7	0.0	0.0		7.8	0.1	0.1		
Level of Service (LOS)		B			B			A	A	A		A	A	A		
Approach Delay (s/veh)		12.3			12.1			0.2				0.6				
Approach LOS		B			B			A				A				

HCS Two-Way Stop-Control Report

General Information				Site Information																																
Analyst	MP			Intersection			Greene Rd at Kimberwick/Greene Valley Fore...																													
Agency/Co.	Stantec Consulting			Jurisdiction			Lisle Twp																													
Date Performed	12/3/2025			East/West Street			Kimberwick Ln/Greene Valley Forest Preserve...																													
Analysis Year	2050			North/South Street			Greene Rd																													
Time Analyzed	Proposed PM Peak			Peak Hour Factor			0.95																													
Intersection Orientation	North-South			Analysis Time Period (hrs)			0.25																													
Project Description	Alternate A – Relocated Forest Preserve Entrance to Kimberwick with Four-Legged Intersection																																			
Lanes																																				
 Major Street: North-South																																				
Vehicle Volumes and Adjustments																																				
Approach	Eastbound				Westbound				Northbound				Southbound																							
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U																							
Priority		10	11	12		7	8	9	1U	1	2	3	4U																							
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0																							
Configuration		LTR				LTR				LTR			LTR																							
Volume (veh/h)		5	5	5		20	5	20		10	255	20	20																							
Percent Heavy Vehicles (%)		0	0	0		0	0	0		0		0																								
Proportion Time Blocked																																				
Percent Grade (%)	0				0																															
Right Turn Channelized																																				
Median Type Storage	Undivided																																			
Critical and Follow-up Headways																																				
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1			4.1																							
Critical Headway (sec)		7.10	6.50	6.20		7.10	6.50	6.20		4.10			4.10																							
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2			2.2																							
Follow-Up Headway (sec)		3.50	4.00	3.30		3.50	4.00	3.30		2.20			2.20																							
Delay, Queue Length, and Level of Service																																				
Flow Rate, v (veh/h)		16				47			11			21																								
Capacity, c (veh/h)		458				494			1295			1284																								
v/c Ratio		0.03				0.10			0.01			0.02																								
95% Queue Length, Q ₉₅ (veh)		0.1				0.3			0.0			0.0																								
95% Queue Length, Q ₉₅ (ft)		2.5				7.5			0.0			0.0																								
Control Delay (s/veh)		13.1				13.1			7.8	0.1	0.1	7.9	0.2																							
Level of Service (LOS)		B				B			A	A	A	A	A																							
Approach Delay (s/veh)	13.1				13.1				0.3			0.7																								
Approach LOS	B				B				A			A																								


HCS Roundabouts Report

General Information				Site Information																				
Analyst	MP				Intersection			Greene Rd at Kimberwick/Gr...																
Agency or Co.	Stantec Consulting				E/W Street Name			Kimberwick Ln/Greene Valle...																
Date Performed	12/3/2025				N/S Street Name			Greene Rd																
Analysis Year	2025				Analysis Time Period, hrs			0.25																
Time Analyzed	Proposed AM Peak				Peak Hour Factor			0.95																
Project Description	Alternate B – Relocated Forest Preserve Entrance to Kimberwick with Roundabout				Jurisdiction			Lisle Twp																
Volume Adjustments and Site Characteristics																								
Approach	EB			WB			NB			SB														
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R								
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0								
Lane Assignment				LTR						LTR						LTR								
Volume (V), veh/h	0	5	5	5	0	15	5	15	0	5	230	15	0	15	230	5								
Percent Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	14	0	0	0	14	0								
Flow Rate (v _{pce}), pc/h	0	5	5	5	0	16	5	16	0	5	276	16	0	16	276	5								
Right-Turn Bypass	None			None			None			None						None								
Conflicting Lanes	1			1			1			1						1								
Pedestrians Crossing, p/h	0			0			0			0						0								
Proportion of CAVs, %														0										
Critical and Follow-Up Headway Adjustment																								
Approach	EB			WB			NB			SB														
Lane	Left	Right	Bypass	Left	Right	Bypass	Left	Right	Bypass	Left	Right	Bypass	Left	Right	Bypass									
Critical Headway, s	4.9763			4.9763			4.9763			4.9763						4.9763								
Follow-Up Headway, s	2.6087			2.6087			2.6087			2.6087						2.6087								
Flow Computations, Capacity and v/c Ratios																								
Approach	EB			WB			NB			SB														
Lane	Left	Right	Bypass	Left	Right	Bypass	Left	Right	Bypass	Left	Right	Bypass	Left	Right	Bypass									
Entry Flow (v _e), pc/h	15			37			297			297														
Entry Volume, veh/h	15			37			263			263														
Circulating Flow (v _c), pc/h	308			286			26			26														
Exiting Flow (v _{ex}), pc/h	37			15			297			297														
Capacity (c _{pce}), pc/h	1008			1031			1344			1344														
Capacity (c), veh/h	1008			1031			1191			1191														
v/c Ratio (x)	0.01			0.04			0.22			0.22														
Delay and Level of Service																								
Approach	EB			WB			NB			SB														
Lane	Left	Right	Bypass	Left	Right	Bypass	Left	Right	Bypass	Left	Right	Bypass	Left	Right	Bypass									
Lane Control Delay (d), s/veh	3.7			3.8			5.0			5.0														
Lane LOS	A			A			A			A														
95% Queue Length, Q ₉₅ (veh)	0.0			0.1			0.8			0.8														
95% Queue Length, Q ₉₅ (ft)	0.0			2.5			22.1			22.1														
Approach Delay, s/veh LOS	3.7			A			5.0			A														
Intersection Delay, s/veh LOS	4.9			A			5.0			A														


HCS Roundabouts Report

General Information				Site Information																				
Analyst	MP				Intersection			Greene Rd at Kimberwick/Gr...																
Agency or Co.	Stantec Consulting				E/W Street Name			Kimberwick Ln/Greene Valle...																
Date Performed	12/3/2025				N/S Street Name			Greene Rd																
Analysis Year	2025				Analysis Time Period, hrs			0.25																
Time Analyzed	Proposed PM Peak				Peak Hour Factor			0.95																
Project Description	Alternate B – Relocated Forest Preserve Entrance to Kimberwick with Roundabout				Jurisdiction			Lisle Twp																
Volume Adjustments and Site Characteristics																								
Approach	EB			WB			NB			SB														
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R								
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0								
Lane Assignment	LTR			LTR			LTR			LTR			LTR											
Volume (V), veh/h	0	5	5	5	0	20	5	20	0	10	255	20	0	20	255	10								
Percent Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	14	0	0	0	14	0								
Flow Rate (v _{pce}), pc/h	0	5	5	5	0	21	5	21	0	11	306	21	0	21	306	11								
Right-Turn Bypass	None			None			None			None			None											
Conflicting Lanes	1			1			1			1			1											
Pedestrians Crossing, p/h	0			0			0			0			0											
Proportion of CAVs, %	0																							
Critical and Follow-Up Headway Adjustment																								
Approach	EB			WB			NB			SB														
Lane	Left	Right	Bypass	Left	Right	Bypass	Left	Right	Bypass	Left	Right	Bypass	Left	Right	Bypass									
Critical Headway, s	4.9763			4.9763			4.9763			4.9763			4.9763											
Follow-Up Headway, s	2.6087			2.6087			2.6087			2.6087			2.6087											
Flow Computations, Capacity and v/c Ratios																								
Approach	EB			WB			NB			SB														
Lane	Left	Right	Bypass	Left	Right	Bypass	Left	Right	Bypass	Left	Right	Bypass	Left	Right	Bypass									
Entry Flow (v _e), pc/h	15			47			338			338														
Entry Volume, veh/h	15			47			300			300														
Circulating Flow (v _c), pc/h	348			322			31			37														
Exiting Flow (v _{ex}), pc/h	47			27			332			332														
Capacity (c _{pce}), pc/h	968			994			1337			1329														
Capacity (c), veh/h	968			994			1188			1181														
v/c Ratio (x)	0.02			0.05			0.25			0.25														
Delay and Level of Service																								
Approach	EB			WB			NB			SB														
Lane	Left	Right	Bypass	Left	Right	Bypass	Left	Right	Bypass	Left	Right	Bypass	Left	Right	Bypass									
Lane Control Delay (d), s/veh	3.9			4.0			5.3			5.4														
Lane LOS	A			A			A			A														
95% Queue Length, Q ₉₅ (veh)	0.0			0.1			1.0			1.0														
95% Queue Length, Q ₉₅ (ft)	0.0			2.5			27.5			27.5														
Approach Delay, s/veh LOS	3.9			A			5.3			A			5.4											
Intersection Delay, s/veh LOS	5.2									A														

HCS Two-Way Stop-Control Report

General Information				Site Information																										
Analyst	MP			Intersection		Greene Rd at Greene Valley Forest Preserve e...																								
Agency/Co.	Stantec Consulting			Jurisdiction		Lisle Twp																								
Date Performed	12/3/2025			East/West Street		Greene Valley Forest Preserve entrance																								
Analysis Year	2050			North/South Street		Greene Rd																								
Time Analyzed	No-Build AM Peak			Peak Hour Factor		0.95																								
Intersection Orientation	North-South			Analysis Time Period (hrs)		0.25																								
Project Description	Alternate C - Relocated Entrance at Offset from Kimberwick																													
Lanes																														
Vehicle Volumes and Adjustments																														
Approach	Eastbound			Westbound			Northbound			Southbound																				
Movement	U	L	T	R	U	L	T	R	U	L	T	R																		
Priority		10	11	12		7	8	9	1U	1	2	3																		
Number of Lanes		0	0	0		0	1	0	0	0	0	1																		
Configuration						LR				TR		LT																		
Volume (veh/h)						15		15		230	15	15																		
Percent Heavy Vehicles (%)						0		0				0																		
Proportion Time Blocked																														
Percent Grade (%)						0																								
Right Turn Channelized																														
Median Type Storage	Undivided																													
Critical and Follow-up Headways																														
Base Critical Headway (sec)						7.1		6.2			4.1																			
Critical Headway (sec)						6.40		6.20			4.10																			
Base Follow-Up Headway (sec)						3.5		3.3			2.2																			
Follow-Up Headway (sec)						3.50		3.30			2.20																			
Delay, Queue Length, and Level of Service																														
Flow Rate, v (veh/h)						32					16																			
Capacity, c (veh/h)						621					1319																			
v/c Ratio						0.05					0.01																			
95% Queue Length, Q ₉₅ (veh)						0.2					0.0																			
95% Queue Length, Q ₉₅ (ft)						5.0					0.0																			
Control Delay (s/veh)						11.1					7.8	0.1																		
Level of Service (LOS)						B					A	A																		
Approach Delay (s/veh)				11.1							0.6																			
Approach LOS				B							A																			

HCS Two-Way Stop-Control Report

General Information				Site Information																										
Analyst	MP			Intersection		Greene Rd at Greene Valley Forest Preserve e...																								
Agency/Co.	Stantec Consulting			Jurisdiction		Lisle Twp																								
Date Performed	12/3/2025			East/West Street		Greene Valley Forest Preserve entrance																								
Analysis Year	2050			North/South Street		Greene Rd																								
Time Analyzed	No-Build PM Peak			Peak Hour Factor		0.95																								
Intersection Orientation	North-South			Analysis Time Period (hrs)		0.25																								
Project Description	Alternate C - Relocated Entrance at Offset from Kimberwick																													
Lanes																														
 Major Street: North-South																														
Vehicle Volumes and Adjustments																														
Approach	Eastbound			Westbound			Northbound			Southbound																				
Movement	U	L	T	R	U	L	T	R	U	L	T	R																		
Priority		10	11	12		7	8	9	1U	1	2	3																		
Number of Lanes		0	0	0		0	1	0	0	0	0	1																		
Configuration						LR				TR		LT																		
Volume (veh/h)						20		20		255	20	20																		
Percent Heavy Vehicles (%)						0		0				0																		
Proportion Time Blocked																														
Percent Grade (%)						0																								
Right Turn Channelized																														
Median Type Storage	Undivided																													
Critical and Follow-up Headways																														
Base Critical Headway (sec)						7.1		6.2			4.1																			
Critical Headway (sec)						6.40		6.20			4.10																			
Base Follow-Up Headway (sec)						3.5		3.3			2.2																			
Follow-Up Headway (sec)						3.50		3.30			2.20																			
Delay, Queue Length, and Level of Service																														
Flow Rate, v (veh/h)						42					21																			
Capacity, c (veh/h)						578					1284																			
v/c Ratio						0.07					0.02																			
95% Queue Length, Q ₉₅ (veh)						0.2					0.0																			
95% Queue Length, Q ₉₅ (ft)						5.0					0.0																			
Control Delay (s/veh)						11.7					7.9	0.2																		
Level of Service (LOS)						B					A	A																		
Approach Delay (s/veh)	11.7										0.7																			
Approach LOS	B										A																			

Appendix K Site Visit Photo Log

Table of Content

Photo Number	Context
1	Greene Valley Forest Preserve Entrance/Exit. (Looking West)
2	Greene Road from Preserve entrance (Looking North).
3	Greene Road from Preserve entrance (Looking South).
4	"35 MPH" Posted Speed Limit Sign on SB Greene Road (Looking South).
5	"Forest Preserve Entrance Ahead" sign for Northbound Greene Road traffic, south of Preserve entrance (Looking North).
6	Greene Road and Forest Preserve entrance from Northbound Greene Road (Looking North).
7	Southbound traffic on Greene Road from driver's perspective exiting the forest preserve (Looking North)
8	Northbound traffic on Greene Road from driver's perspective exiting the forest preserve (Looking South)
9	Northbound Car on Greene Road turning right through Preserve entrance.
10	Southbound Car on Greene Road turning left through Preserve entrance.
11	Greene Road and Kimberwick Lane (Looking North-East).
12	Greene Road and Kimberwick Lane intersection, looking at the preserve (Looking East).
13	Greene Road north of Kimberwick Lane (Looking North).
14	Greene Road south of Kimberwick lane (Looking South towards the existing Preserve entrance).
15	Greene Road / Kimberwick Lane intersection (Looking West towards Kimberwick Lane).
16	Potential location for entrance relocation across from Kimberwick Lane (Looking East).
17	Greene Road just north of Preserve entrance (Looking South)
18	"35 MPH" Speed Limit Sign on South-West corner of Greene Road and Oxer Court intersection (Looking South)
19	Truck Weight Limit Sign on South-West corner of Greene Road and Hobson Road intersection (Looking South)

Photo 1. Greene Valley Forest Preserve Entrance/Exit. (Looking West)

Photo 2. Greene Road from Preserve entrance (Looking North).

Photo 3. Greene Road from Preserve entrance (Looking South).

Photo 4. "35 MPH" Posted Speed Limit Sign on SB Greene Road (Looking South).

Photo 5. "Forest Preserve Entrance Ahead" sign for Northbound Greene Road traffic, south of Preserve entrance (Looking North).

Photo 6. Greene Road and Forest Preserve entrance from Northbound Greene Road (Looking North).

Photo 7. Southbound traffic on Greene Road from driver's perspective exiting the forest preserve (Looking North)

Photo 8. Northbound traffic on Greene Road from driver's perspective exiting the forest preserve (Looking South)

Photo 9. Northbound Car on Greene Road turning right through Preserve entrance.

Photo 10. Southbound Car on Greene Road turning left through Preserve entrance.

Photo 11. Greene road and Kimberwick Lane (Looking North-East).

Photo 12. Greene Road and Kimberwick Lane intersection, looking at the preserve (Looking East).

Photo 13. Greene Road north of Kimberwick Lane (Looking North).

Photo 14. Greene Road south of Kimberwick lane (Looking south towards the existing Preserve entrance).

Photo 15. Greene Road / Kimberwick Lane intersection (Looking West towards Kimberwick Lane).

Photo 16. Potential location for entrance relocation across from Kimberwick Lane (Looking East).

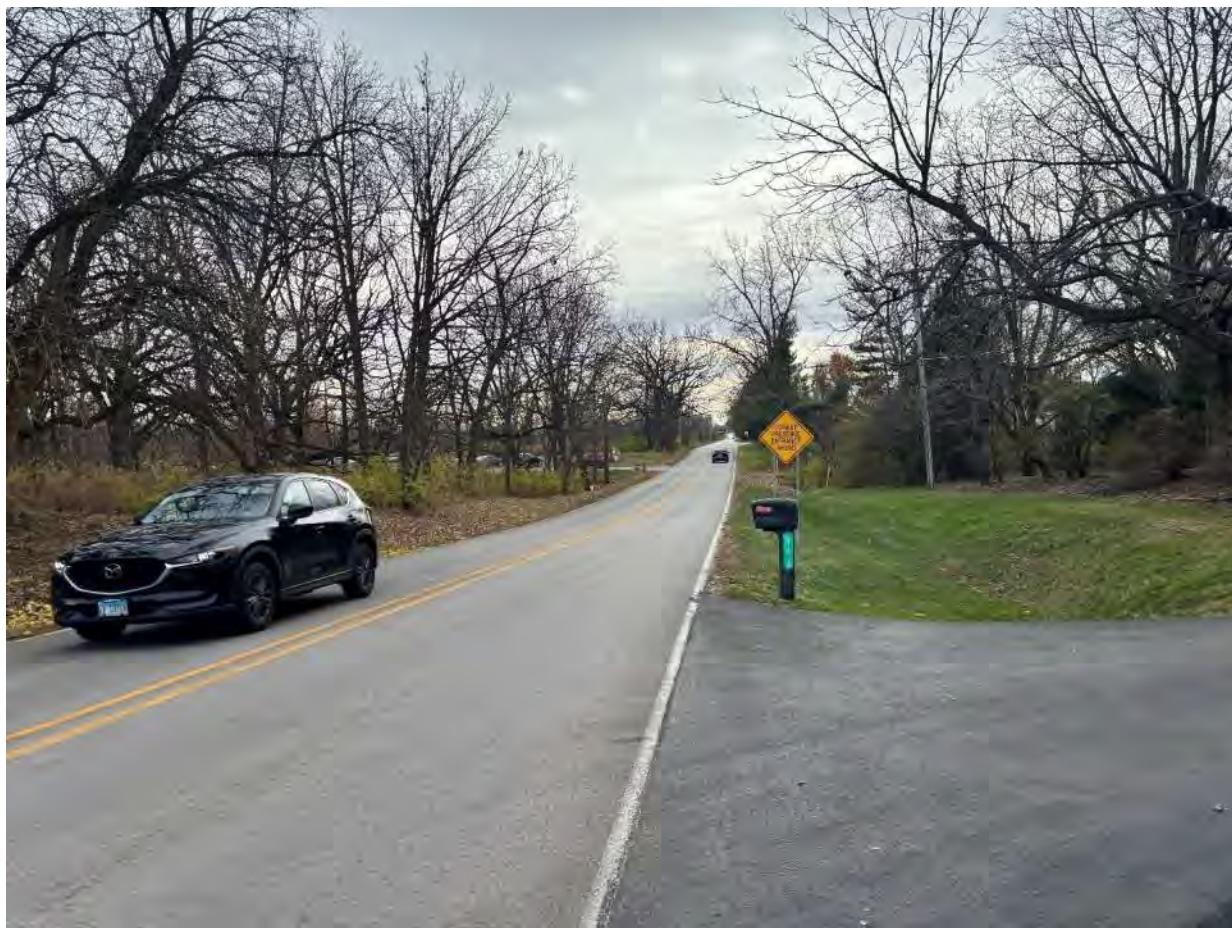
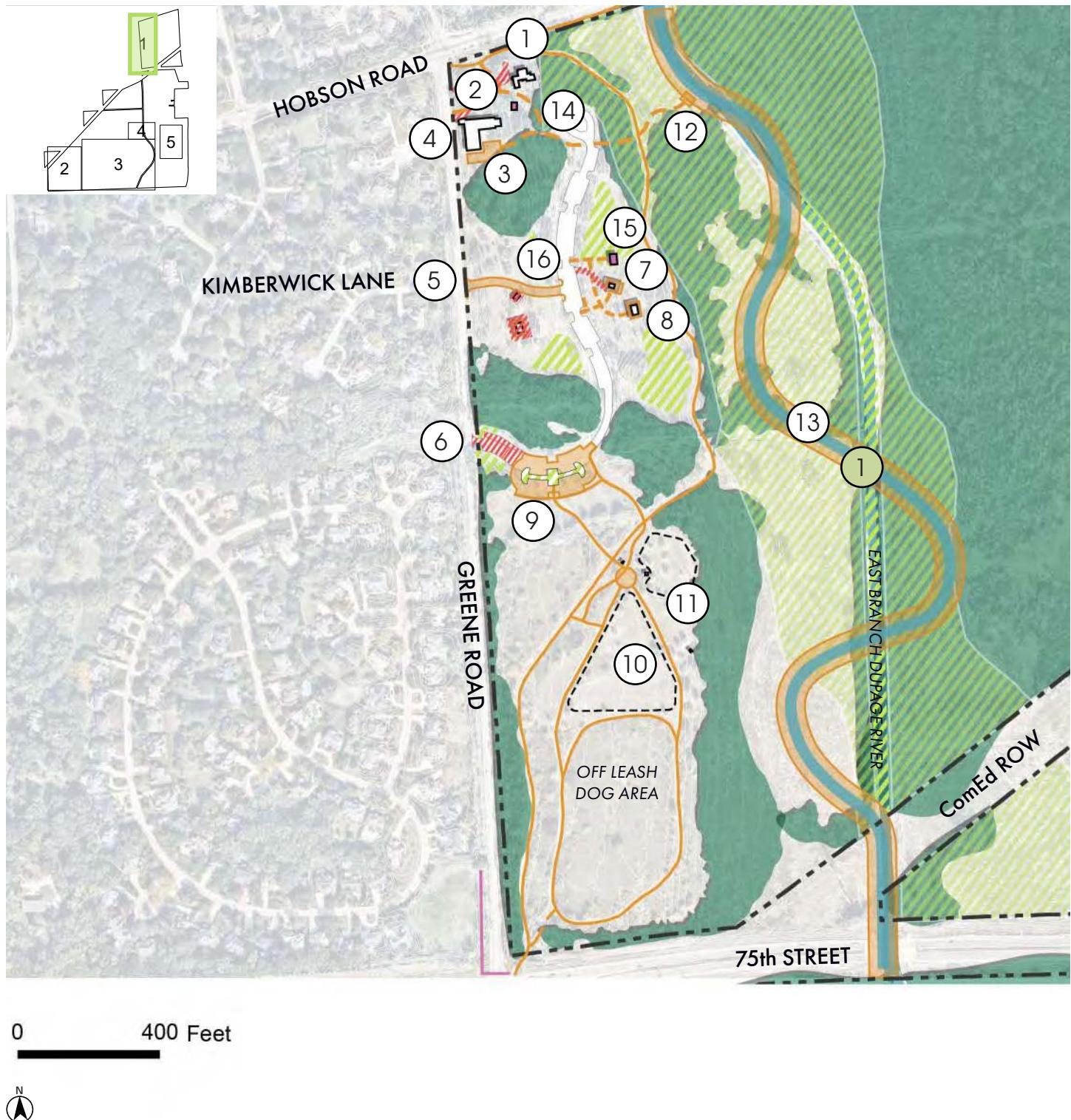


Photo 17. Greene Road just north of Preserve entrance (Looking South)

Photo 18. "35 MPH" Speed Limit Sign on South-West corner of Greene Road and Oxer Court intersection (Looking South)


Photo 19. Truck Weight Limit Sign on South-West corner of Greene Road and Hobson Road intersection (Looking South)

Appendix L Greene Valley Master Plan

FRAMEWORK PLANS

FOCUS AREAS

1 Greene Farm Barn, Oak Cottage, Shelters, Off Leash Dog Area

PROJECTS AND RECOMMENDATIONS

Oak Cottage

- 1 Perform a study on the Oak Cottage to document the structure's history and condition.
- 2 Determine a defined time-frame (3 years or less) for a third-party partner to identify a purpose and a means to utilize and maintain the existing Oak Cottage. Issue a request for third-party statements of interest. If a third-party partner does not establish a viable mission-aligned plan for use and maintenance within the defined time-frame, then remove the structure and interpret the history of the Greene Homestead.

Greene Farm Barn Trail Connection Improvements

- 14 Add trail connection from north parking lot to Greene Farm Barn.

Greene Farm Barn Outdoor Patio

- 3 Install outdoor patio space southeast of barn and shade pavilion.

Greene Farm Exterior Maintenance

- 4 Preserve the structural integrity of Greene Farm Barn.

North Parking Lot Entrance Realignment

- 5 Construct new vehicular entrance.
- 6 Close existing entrance and move north for better visibility. Relocate existing license plate reader to new entrance.

North Area Flush Restrooms

- 7 Upgrade latrines to flush restroom facilities.

North Shelter Reconfigurations and Improvement

- 8 Expand concrete paving around existing pavilion pads.
- 15 Reconfigure trails for better accessibility.
- 16 Relocate shelter west of parking lot to east side of the parking lot.

Off Leash Dog Area Parking Lot

- 9 Expand the parking lot.

Off Leash Dog Area Amenity Improvements

- 10 Plant additional trees and add benches in dog area.
- 11 Upgrade fencing.

Canoe and Kayak Launch

- 12 Provide river access with kayak and canoe launch.

Southern Dupage Regional Trail Realignment at East Branch of Dupage River

- 13 Planned East Branch of the DuPage River Restoration Project.*

RESTORATION RECOMMENDATIONS

- 1 East Branch DuPage River

*Projects being completed by others.

LEGEND

	PRESERVE BOUNDARY		PROPOSED IMPROVEMENT		LIMESTONE TRAIL
	SHRUB MEADOW		PLANNED IMPROVEMENT		TURF TRAIL
	WATER BODY		PROPOSED RESTORATION		PROPOSED LIMESTONE TRAIL
	EXISTING BUILDING		REMOVAL		PROPOSED TURF TRAIL
	PROPOSED STRUCTURE		PROPOSED FENCE		PROPOSED TRAIL CONNECTION BY OTHERS

Appendix M Existing - Traffic Signal and All-Way STOP Warrant Analysis

EXHIBIT M1

SUMMARY OF TRAFFIC SURVEY

INTERSECTION: **Greene Road & Forest Preserve**

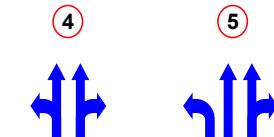
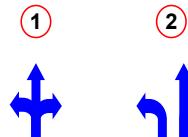
MUNICIPALITY: **Lisle Township**

COUNTY: **DuPage**

ROUTE :	TRAFFIC FROM NORTH				TRAFFIC FROM SOUTH				TRAFFIC FROM EAST				TRAFFIC FROM WEST				TOTAL EAST AND WEST	GRAND TOTAL	
	Greene Road <input type="checkbox"/> SRA				Greene Road <input type="checkbox"/> SRA				Forest Preserve <input type="checkbox"/> SRA				Forest Preserve <input type="checkbox"/> SRA						
START HOUR	EAST	SOUTH	WEST	TOTAL	WEST	NORTH	EAST	TOTAL	TOTAL NORTH AND SOUTH	E. OF : Greene Road <input type="checkbox"/> SRA	SOUTH	WEST	NORTH	TOTAL	W. OF : Greene Road <input type="checkbox"/> SRA	NORTH	EAST	SOUTH	TOTAL
6:00	20	255	0	275	0	255	20	275	550	20	0	20	40	0	0	0	0	40	590
7:00	20	255	0	275	0	255	20	275	550	20	0	20	40	0	0	0	0	40	590
8:00	20	255	0	275	0	255	20	275	550	20	0	20	40	0	0	0	0	40	590
9:00	20	255	0	275	0	255	20	275	550	20	0	20	40	0	0	0	0	40	590
10:00	20	255	0	275	0	255	20	275	550	20	0	20	40	0	0	0	0	40	590
11:00	20	255	0	275	0	255	20	275	550	20	0	20	40	0	0	0	0	40	590
12:00	20	255	0	275	0	255	20	275	550	20	0	20	40	0	0	0	0	40	590
13:00	20	255	0	275	0	255	20	275	550	20	0	20	40	0	0	0	0	40	590
14:00	20	255	0	275	0	255	20	275	550	20	0	20	40	0	0	0	0	40	590
15:00	20	255	0	275	0	255	20	275	550	20	0	20	40	0	0	0	0	40	590
16:00	20	255	0	275	0	255	20	275	550	20	0	20	40	0	0	0	0	40	590
17:00	20	255	0	275	0	255	20	275	550	20	0	20	40	0	0	0	0	40	590
18:00	20	255	0	275	0	255	20	275	550	20	0	20	40	0	0	0	0	40	590
19:00	20	255	0	275	0	255	20	275	550	20	0	20	40	0	0	0	0	40	590
20:00	20	255	0	275	0	255	20	275	550	20	0	20	40	0	0	0	0	40	590
21:00	20	255	0	275	0	255	20	275	550	20	0	20	40	0	0	0	0	40	590

EXHIBIT M2

RIGHT TURN FACTORIZATION SHEET



INTERSECTION: **Greene Road & Forest Preserve**

MUNICIPALITY: Lisle Township

COUNTY: DuPage

DIR	HOUR BEGIN	MINOR STREET				CRITICAL MAINLINE APPROACH VOLUME PER LANE	BASE RIGHT TURN REDUCTION %	MAINLINE CONGESTION FACTOR %	ADJUSTED RIGHT TURN REDUCTION %	ADJUSTED RIGHT TURNS	ADJUSTED MINOR STREET VOLUMES						
		STREET NAME: Forest Preserv															
		CONFIG. #: 1 VOLUMES															
		L	T	R	A												
		LEFT	THROUGH	RIGHT	TOTAL												
W.B.	6:00	20	0	20	40	275	40	0	40	12	32						
W.B.	7:00	20	0	20	40	275	40	0	40	12	32						
W.B.	8:00	20	0	20	40	275	40	0	40	12	32						
W.B.	9:00	20	0	20	40	275	40	0	40	12	32						
W.B.	10:00	20	0	20	40	275	40	0	40	12	32						
W.B.	11:00	20	0	20	40	275	40	0	40	12	32						
W.B.	12:00	20	0	20	40	275	40	0	40	12	32						
W.B.	13:00	20	0	20	40	275	40	0	40	12	32						
W.B.	14:00	20	0	20	40	275	40	0	40	12	32						
W.B.	15:00	20	0	20	40	275	40	0	40	12	32						
W.B.	16:00	20	0	20	40	275	40	0	40	12	32						
W.B.	17:00	20	0	20	40	275	40	0	40	12	32						
W.B.	18:00	20	0	20	40	275	40	0	40	12	32						
W.B.	19:00	20	0	20	40	275	40	0	40	12	32						
W.B.	20:00	20	0	20	40	275	40	0	40	12	32						
W.B.	21:00	20	0	20	40	275	40	0	40	12	32						

Lane Configurations

Any Configuration with an exclusive right turn lane (usually \geq to 600 ft. long)

MAINLINE CONGESTION FACTORS	
VOLUMES	FACTOR (%)
0-399	0
400-499	5
500-599	10
600-699	15
700-799	20
800-899	25
900-999	30
1000-1099	35
1100-1199	40
1200-1299	45
1300-1399	50
1400-1499	55

EXHIBIT M3

Project: Greene Road & Forest Preserve

Lisle Township

5% Intersection		
2011	2012	2015
Y/N	Y/N	Y/N

5% Segment	2011	2012	2015
Y/N	Y/N	Y/N	

DuPage

YEAR	INJURY TYPE					CRASH CONDITIONS						TOTAL
	K	A	B	C	PDO	Wet	Wet %	Snow/Ice	Snow/Ice %	Night	Night %	
2020						0	-	0	-	0	-	0
2021						0	-	0	-	0	-	0
2022					1	0	0%	0	0%	0	0%	1
2023						0	-	0	-	0	-	0
2024						0	-	0	-	0	-	0
2025 (partial)					0	0	-	0	-	0	-	0
TOTAL	0	0	0	0	1	0	0.0%	0	0.0%	0	0.0%	1

* Note that the law regarding the crash reporting threshold for Property Damage Only crashes was amended effective January 1, 2009, to the following: When all drivers involved in a crash are insured, the amount of damage to the property of any one person that must be reported increased from \$500 to \$1,500. If any driver does not have insurance, the threshold remains at \$500. (This change in law precludes comparison of 2009 and later Property Damage Only crashes and Total crashes with such crashes for previous years. The change did NOT affect the reporting of injury or fatal crashes.)

EXHIBIT M4
MULTI-WAY STOP WARRANT

SRA : _____

YES / NO

INTERSECTION : **Greene Road & Forest Preserve**
 MUNICIPALITY / TOWNSHIP: **Lisle Township**

COUNTY : **DuPage**

SPEED LIMIT OF MAJOR ROUTE : **35 mph**
 NUMBER OF LANES ON MAJOR APPROACH : **1**

PROPOSED 3-WAY OR 4-WAY: **4-WAY**
 NUMBER OF LANES ON MINOR APPROACH : **1**

TRAFFIC VOLUMES			CHECK ANY HOURS WHICH MEET THE FOLLOWING REQUIREMENTS:		
HOUR BEGIN	MAJOR STREET VEHICLES ENTERING (BOTH APPROACHES)	MINOR STREET VEHICLES ENTERING (BOTH APPROACHES)	PEDS OR BIKES (BOTH APPROACHES)	HOURS MET	COMBINATION OF WARRANTS
				100%	80%
6:00	550	40	N/C		
7:00	550	40	N/C		
8:00	550	40	N/C		
9:00	550	40	N/C		
10:00	550	40	N/C		
11:00	550	40	N/C		
12:00	550	40	N/C		
13:00	550	40	N/C		
14:00	550	40	N/C		
15:00	550	40	N/C		
16:00	550	40	N/C		
17:00	550	40	N/C		
18:00	550	40	N/C		
19:00	550	40	N/C		
20:00	550	40	N/C		
21:00	550	40	N/C		

Hours Met: **0 hours** **0 hours**
 VOLUME REQUIREMENTS: MAJOR ENTERING: **300** **240**
 MINOR ENTERING: **200** **160**
 INCLUDING ANY PEDS

ACCIDENT DATA

ACCIDENT EXPERIENCE	2020	2021	2022	2023	2024
TOTAL NUMBER OF ACCIDENTS	0	0	1	0	0
NUMBER CORRECTABLE ACCIDENTS	0	0	0	0	0

(INCLUDING LEFT- AND RIGHT-TURN AS WELL AS RIGHT-ANGLE COLLISIONS)

ACCIDENT WARRANT

5 Correctable Accidents Within A 12-month Period?
 (No Volume Requirement) YES NO

VOLUME WARRANT

Are Volume Requirements Met For 8 Hours?
 YES **0 hours** NO

COMBINATION OF WARRANTS

(REDUCED TO 80%)

4 Correctable Accidents Within A 12-month Period?
 YES NO
 Are Volume Requirements Met For 8 Hours?
 YES **0 hours** NO
 ARE BOTH CRITERIA MET?
 YES NO

IS A MULTI-WAY STOP WARRANTED?

YES NO

EXHIBIT M5
SIGNAL WARRANT REVIEW SHEET

SRA : _____
 Yes No

Intersection: **Greene Road & Forest Preserve**
Municipality: **Lisle Township**

County: **DuPage**

Speed Limit of Major Route **35 mph**
Number of Lanes on Major approach **1**

Isolated Community with Population < 10,000
Number of Lanes on Minor approach **1**

N
1

HOUR BEGIN	Major Street Volume (both approaches)	Adj. Minor Street Volume (higher volume approach)	CHECK ANY HOURS WHICH MEET THE FOLLOWING WARRANTS					
			WARRANT 1		WARRANT 7: 8 hrs of one of the Following:			
			A 100%	B 100%	80% of A	80% of B	80% of Warr #4	
6:00	550	32						
7:00	550	32						
8:00	550	32						
9:00	550	32						
10:00	550	32						
11:00	550	32						
12:00	550	32						
13:00	550	32						
14:00	550	32						
15:00	550	32						
16:00	550	32						
17:00	550	32						
18:00	550	32						
19:00	550	32						
20:00	550	32						
21:00	550	32						

Hours Met :

Volume Requirements: MAJOR: **500** **750** **400** **600** **0 hours**
MINOR: **150** **75** **120** **60** **0 hours**

WARRANT 1 Yes No

Warrant 1 is met if any of the following Conditions are met:

• Condition A **0 hours** Yes No

MINIMUM VEHICULAR VOLUME

• Condition B **0 hours** Yes No

INTERRUPTION OF CONTINUOUS TRAFFIC

• Condition A/B **0 hours** Yes No

COMBINATION OF WARRANTS

WARRANT 2 Yes **0 hours** No

FOUR-HOUR VOLUME

WARRANT 3 Yes **0 hours** No

PEAK-HOUR VOLUME

WARRANT 4 Yes **0 hours** No

PEDESTRIAN VOLUME

WARRANT 5 Yes No

SCHOOL CROSSING

WARRANT 6 Yes No

COORDINATED SIGNAL SYSTEM

WARRANT 7 Yes **0 hours** No

ACCIDENT EXPERIENCE

2020	2021	2022	2023	2024
------	------	------	------	------

TOTAL NUMBER OF ACCIDENTS: **0** **0** **1** **0** **0**

NUMBER CORRECTABLE ACCIDENTS: **0** **0** **0** **0** **0**

TRIED LESS RESTRICTIVE METHODS?

ARE VOLUME REQUIREMENTS MET?

WARRANT 8 Yes No

ROADWAY NETWORK

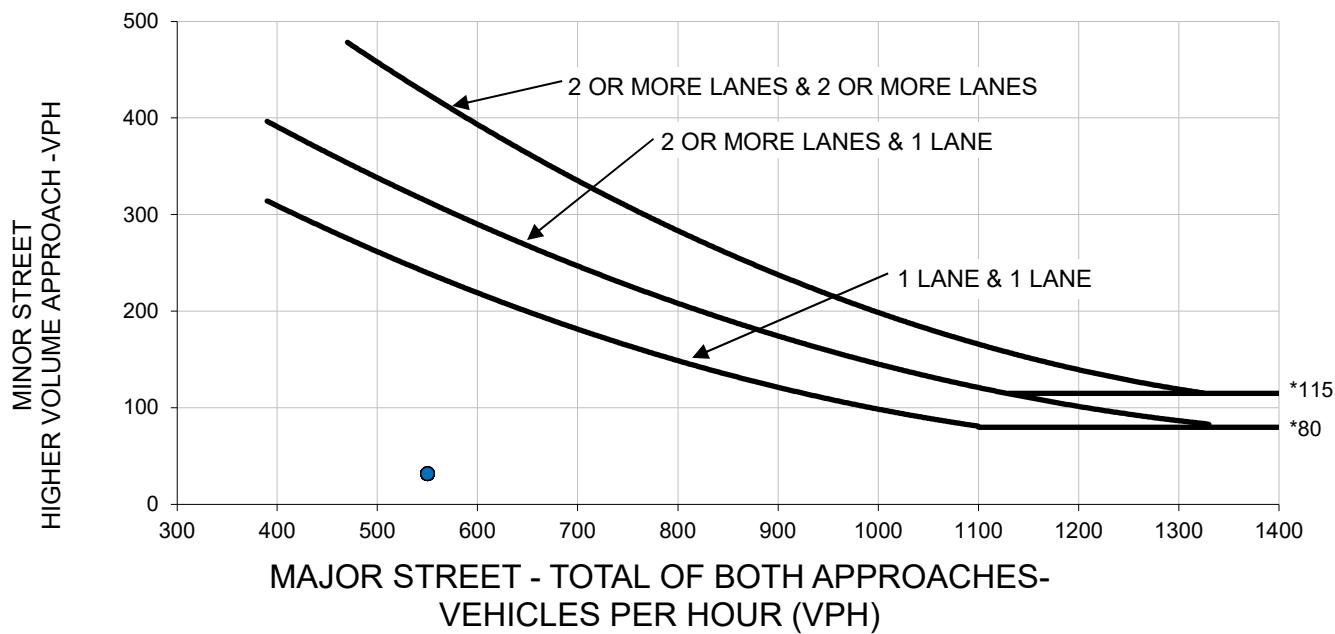
WARRANT 9 Yes No

Intersection Near a Grade Crossing

STOP OR YIELD CONTROLLED LEG WITH GRADE CROSSING: **NORTH**

D (clear storage distance) =

#	%	Adj. Factor
---	---	-------------


RAIL TRAFFIC PER DAY = **-** **1.00**

HIGH OCCUPANCY BUSES PER HOUR = **0%** **1.00**

TRUCKS PER HOUR = **0.0%** **0.50**

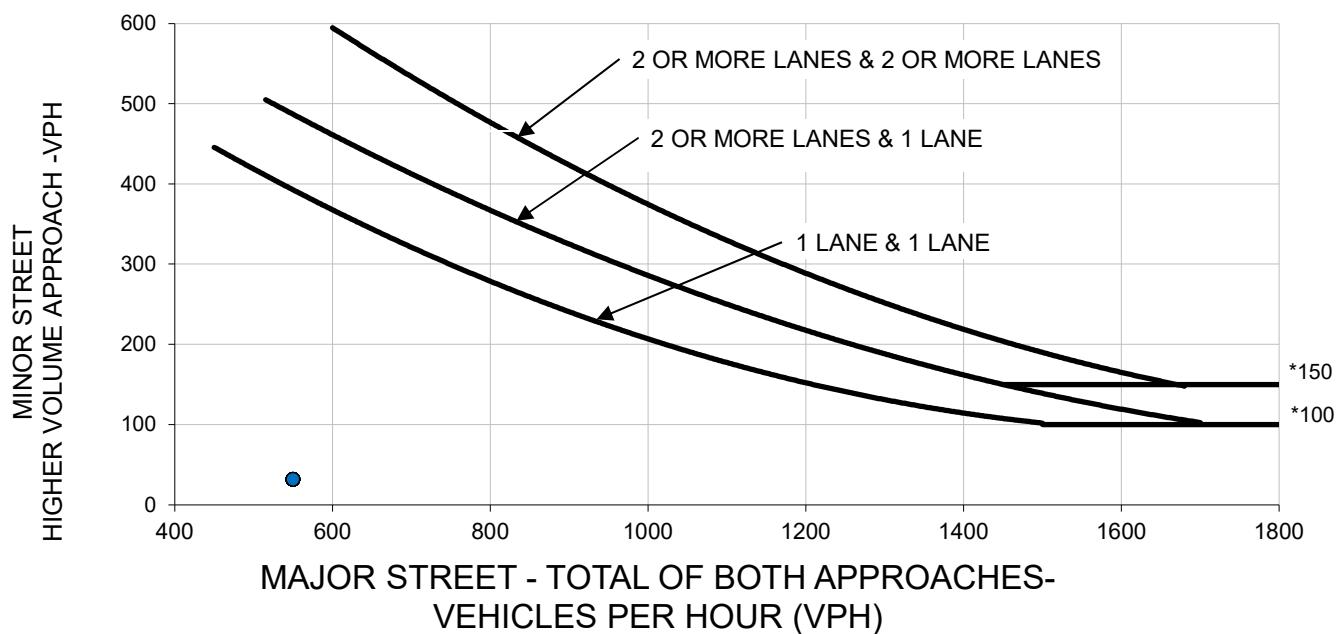

OVERALL ADJUSTMENT FACTOR = **0.50**

EXHIBIT M6
Figure 4C-1. Warrant 2, Four Hour Vehicular Volume

* Note: 115 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 80 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-3 Warrant 3, Peak Hour

* Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Appendix N Proposed - Traffic Signal and All-Way STOP Warrant Analysis

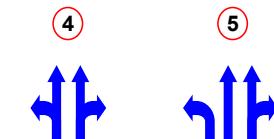
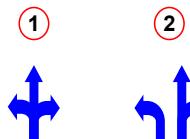
SUMMARY OF TRAFFIC SURVEY

INTERSECTION: **Greene Road & Forest Preserve/Kimberwick Lane**MUNICIPALITY: **Lisle Township**COUNTY: **DuPage**

ROUTE :	TRAFFIC FROM NORTH				TRAFFIC FROM SOUTH				TRAFFIC FROM EAST				TRAFFIC FROM WEST				TOTAL EAST AND WEST	GRAND TOTAL	
	Greene Road <input type="checkbox"/> SRA				Greene Road <input type="checkbox"/> SRA				Forest Preserve <input type="checkbox"/> SRA				Kimberwick Lane <input type="checkbox"/> SRA						
START HOUR	EAST	SOUTH	WEST	TOTAL	WEST	NORTH	EAST	TOTAL	TOTAL NORTH AND SOUTH	E. OF : Greene Road <input type="checkbox"/> GOING	SOUTH	WEST	NORTH	TOTAL	NORTH	EAST	SOUTH	TOTAL	
6:00	20	255	10	285	10	255	20	285	570	20	5	20	45	5	5	5	15	60	630
7:00	20	255	10	285	10	255	20	285	570	20	5	20	45	5	5	5	15	60	630
8:00	20	255	10	285	10	255	20	285	570	20	5	20	45	5	5	5	15	60	630
9:00	20	255	10	285	10	255	20	285	570	20	5	20	45	5	5	5	15	60	630
10:00	20	255	10	285	10	255	20	285	570	20	5	20	45	5	5	5	15	60	630
11:00	20	255	10	285	10	255	20	285	570	20	5	20	45	5	5	5	15	60	630
12:00	20	255	10	285	10	255	20	285	570	20	5	20	45	5	5	5	15	60	630
13:00	20	255	10	285	10	255	20	285	570	20	5	20	45	5	5	5	15	60	630
14:00	20	255	10	285	10	255	20	285	570	20	5	20	45	5	5	5	15	60	630
15:00	20	255	10	285	10	255	20	285	570	20	5	20	45	5	5	5	15	60	630
16:00	20	255	10	285	10	255	20	285	570	20	5	20	45	5	5	5	15	60	630
17:00	20	255	10	285	10	255	20	285	570	20	5	20	45	5	5	5	15	60	630
18:00	20	255	10	285	10	255	20	285	570	20	5	20	45	5	5	5	15	60	630
19:00	20	255	10	285	10	255	20	285	570	20	5	20	45	5	5	5	15	60	630
20:00	20	255	10	285	10	255	20	285	570	20	5	20	45	5	5	5	15	60	630
21:00	20	255	10	285	10	255	20	285	570	20	5	20	45	5	5	5	15	60	630

EXHIBIT N2

RIGHT TURN FACTORIZATION SHEET



INTERSECTION: **Greene Road & Forest Preserve/Kimberwick Lane**

MUNICIPALITY: [Lisle Township](#)

COUNTY: DuPage

DIR	HOUR BEGIN	MINOR STREET				CRITICAL MAINLINE APPROACH VOLUME PER LANE	BASE RIGHT TURN REDUCTION %	MAINLINE CONGESTION FACTOR %	ADJUSTED RIGHT TURN REDUCTION %	ADJUSTED RIGHT TURNS	ADJUSTED MINOR STREET VOLUMES						
		STREET NAME: Forest Preser															
		CONFIG. #: 1 VOLUMES															
		L	T	R	A												
		LEFT	THROUGH	RIGHT	TOTAL												
W.B.	6:00	20	5	20	45	275	40	0	40	12	37						
W.B.	7:00	20	5	20	45	275	40	0	40	12	37						
W.B.	8:00	20	5	20	45	275	40	0	40	12	37						
W.B.	9:00	20	5	20	45	275	40	0	40	12	37						
W.B.	10:00	20	5	20	45	275	40	0	40	12	37						
W.B.	11:00	20	5	20	45	275	40	0	40	12	37						
W.B.	12:00	20	5	20	45	275	40	0	40	12	37						
W.B.	13:00	20	5	20	45	275	40	0	40	12	37						
W.B.	14:00	20	5	20	45	275	40	0	40	12	37						
W.B.	15:00	20	5	20	45	275	40	0	40	12	37						
W.B.	16:00	20	5	20	45	275	40	0	40	12	37						
W.B.	17:00	20	5	20	45	275	40	0	40	12	37						
W.B.	18:00	20	5	20	45	275	40	0	40	12	37						
W.B.	19:00	20	5	20	45	275	40	0	40	12	37						
W.B.	20:00	20	5	20	45	275	40	0	40	12	37						
W.B.	21:00	20	5	20	45	275	40	0	40	12	37						

Lane Configurations

Any Configuration with an
exclusive right turn lane
(usually \geq to 600 ft. long)

MAINLINE CONGESTION FACTORS	
VOLUMES	FACTOR (%)
0-399	0
400-499	5
500-599	10
600-699	15
700-799	20
800-899	25
900-999	30
1000-1099	35
1100-1199	40
1200-1299	45
1300-1399	50
1400-1499	55

EXHIBIT N3

Project: Greene Road & Forest Preserve/Kimberwick Lane

Town: Lisle Township

County: DuPage

5% Intersection			5% Segment		
2011	2012	2015	2011	2012	2015
Y/N	Y/N	Y/N	Y/N	Y/N	Y/N

YEAR	INJURY TYPE					CRASH CONDITIONS						TOTAL
	K	A	B	C	PDO	Wet	Wet %	Snow/Ice	Snow/Ice %	Night	Night %	
2020						0	-	0	-	0	-	0
2021						0	-	0	-	0	-	0
2022					1	0	0%	0	0%	0	0%	1
2023						0	-	0	-	0	-	0
2024						0	-	0	-	0	-	0
2025 (partial)					1	0	0%	0	0%	1	100%	1
TOTAL	0	0	0	0	2	0	0.0%	0	0.0%	1	50.0%	2

* Note that the law regarding the crash reporting threshold for Property Damage Only crashes was amended effective January 1, 2009, to the following: When all drivers involved in a crash are insured, the amount of damage to the property of any one person that must be reported increased from \$500 to \$1,500. If any driver does not have insurance, the threshold remains at \$500. (This change in law precludes comparison of 2009 and later Property Damage Only crashes and Total crashes with such crashes for previous years. The change did NOT affect the reporting of injury or fatal crashes.)

MULTI-WAY STOP WARRANT

SRA : _____

YES / NOINTERSECTION : Greene Road & Forest Preserve/Kimberwick LaneMUNICIPALITY / TOWNSHIP: Lisle TownshipCOUNTY : DuPageSPEED LIMIT OF MAJOR ROUTE : 35 mphNUMBER OF LANES ON MAJOR APPROACH : 1PROPOSED 3-WAY OR 4-WAY: 4-WAYNUMBER OF LANES ON MINOR APPROACH : 1

HOUR BEGIN	TRAFFIC VOLUMES			CHECK ANY HOURS WHICH MEET THE FOLLOWING REQUIREMENTS:	
	MAJOR STREET VEHICLES ENTERING (BOTH APPROACHES)	MINOR STREET VEHICLES ENTERING (BOTH APPROACHES)	PEDS OR BIKES (BOTH APPROACHES)	HOURS MET	COMBINATION OF WARRANTS
	N/C = NOT COUNTED			100%	80%
6:00	570	60	N/C		
7:00	570	60	N/C		
8:00	570	60	N/C		
9:00	570	60	N/C		
10:00	570	60	N/C		
11:00	570	60	N/C		
12:00	570	60	N/C		
13:00	570	60	N/C		
14:00	570	60	N/C		
15:00	570	60	N/C		
16:00	570	60	N/C		
17:00	570	60	N/C		
18:00	570	60	N/C		
19:00	570	60	N/C		
20:00	570	60	N/C		
21:00	570	60	N/C		

Hours Met: 0 hours 0 hours

VOLUME REQUIREMENTS: MAJOR ENTERING: 300 240
 MINOR ENTERING: 200 160
 INCLUDING ANY PEDS

ACCIDENT DATA

ACCIDENT EXPERIENCE	2020	2021	2022	2023	2024
TOTAL NUMBER OF ACCIDENTS	0	0	1	0	0
NUMBER CORRECTABLE ACCIDENTS	0	0	0	0	0

(INCLUDING LEFT- AND RIGHT-TURN AS WELL AS RIGHT-ANGLE COLLISIONS)

ACCIDENT WARRANT

5 Correctable Accidents Within A 12-month Period?
 (No Volume Requirement) YES NO

VOLUME WARRANT

Are Volume Requirements Met For 8 Hours?
 YES 0 hours NO

COMBINATION OF WARRANTS

(REDUCED TO 80%)

4 Correctable Accidents Within A 12-month Period?
 YES NO
 Are Volume Requirements Met For 8 Hours?
 YES 0 hours NO
 ARE BOTH CRITERIA MET?
 YES NO

IS A MULTI-WAY STOP
WARRANTED?YES NO

SIGNAL WARRANT REVIEW SHEET

SRA : _____
Yes No Intersection: **Greene Road & Forest Preserve/Kimberwick Lane**
Municipality: **Lisle Township**County: **DuPage**Speed Limit of Major Route **35 mph**
Number of Lanes on Major approach **1**Isolated Community with Population < 10,000
Number of Lanes on Minor approach **1****N**
1

HOUR BEGIN	Major Street Volume (both approaches)	Adj. Minor Street Volume (higher volume approach)	CHECK ANY HOURS WHICH MEET THE FOLLOWING WARRANTS					
			WARRANT 1		WARRANT 7: 8 hrs of one of the Following:			
			A 100%	B 100%	80% of A	80% of B	80% of Warr #4	
6:00	570	37						
7:00	570	37						
8:00	570	37						
9:00	570	37						
10:00	570	37						
11:00	570	37						
12:00	570	37						
13:00	570	37						
14:00	570	37						
15:00	570	37						
16:00	570	37						
17:00	570	37						
18:00	570	37						
19:00	570	37						
20:00	570	37						
21:00	570	37						

Hours Met :

Volume Requirements:
MAJOR: **500** **750** **400** **600** **0 hours**
MINOR: **150** **75** **120** **60** **0 hours****WARRANT 1** Yes No

Warrant 1 is met if any of the following Conditions are met:

• Condition A **0 hours** Yes No

MINIMUM VEHICULAR VOLUME

• Condition B **0 hours** Yes No

INTERRUPTION OF CONTINUOUS TRAFFIC

• Condition A/B **0 hours** Yes No

COMBINATION OF WARRANTS

WARRANT 2 Yes **0 hours** No

FOUR-HOUR VOLUME

WARRANT 3 Yes **0 hours** No

PEAK-HOUR VOLUME

WARRANT 4 Yes **0 hours** No

PEDESTRIAN VOLUME

WARRANT 5 Yes No

SCHOOL CROSSING

WARRANT 6 Yes No

COORDINATED SIGNAL SYSTEM

WARRANT 7 Yes **0 hours** No

ACCIDENT EXPERIENCE

TOTAL NUMBER OF ACCIDENTS: **2020** **2021** **2022** **2023** **2024**NUMBER CORRECTABLE ACCIDENTS: **0** **0** **1** **0** **0**

TRIED LESS RESTRICTIVE METHODS?

ARE VOLUME REQUIREMENTS MET?

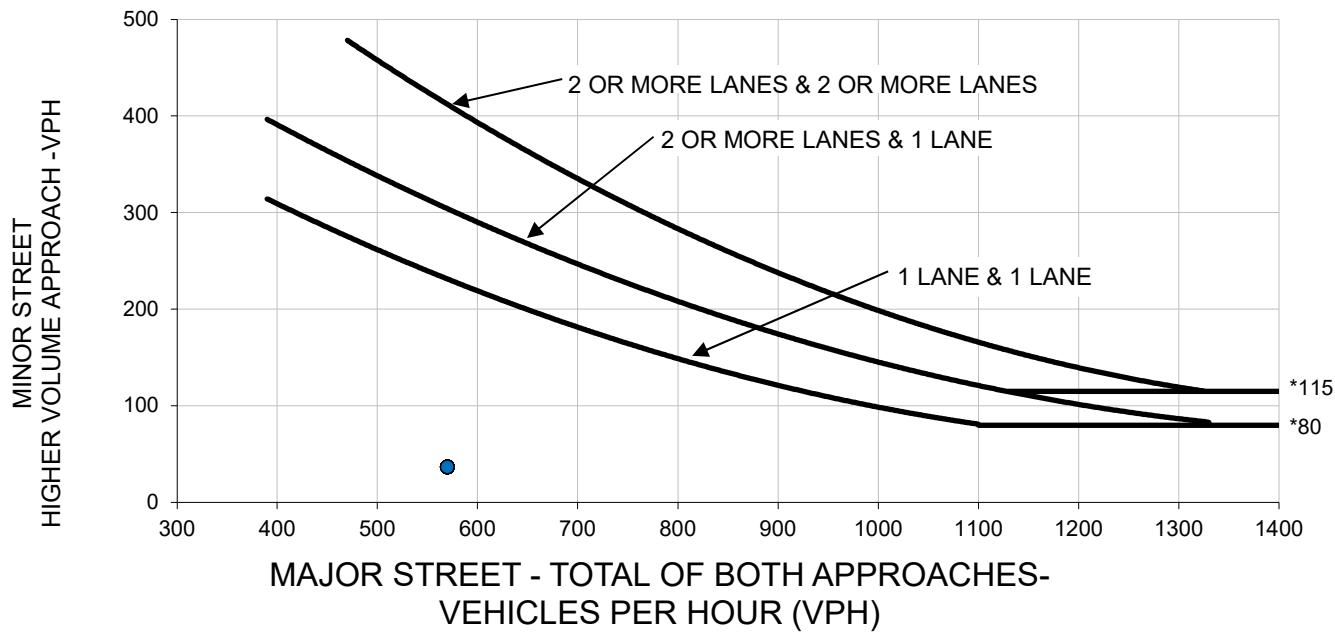
WARRANT 8 Yes No

ROADWAY NETWORK

WARRANT 9 Yes No

Intersection Near a Grade Crossing

STOP OR YIELD CONTROLLED LEG WITH GRADE CROSSING: **NORTH**


D (clear storage distance) =

% Adj. Factor

RAIL TRAFFIC PER DAY = **-** 1.00HIGH OCCUPANCY BUSES PER HOUR = **0%** 1.00TRUCKS PER HOUR = **0.0%** 0.50OVERALL ADJUSTMENT FACTOR = **0.50**

EXHIBIT N6

Figure 4C-1. Warrant 2, Four Hour Vehicular Volume

* Note: 115 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 80 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-3 Warrant 3, Peak Hour

* Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

With every community, we redefine what's possible.

Stantec is a global leader in sustainable engineering, architecture, and environmental consulting. The diverse perspectives of our partners and interested parties drive us to think beyond what's previously been done on critical issues like climate change, digital transformation, and future-proofing our cities and infrastructure. We innovate at the intersection of community, creativity, and client relationships to advance communities everywhere, so that together we can redefine what's possible.

